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Foreword

This is the second of a series of four volumes which are to contain the
Proceedings of the Summer Seminar on Applied Mathematics,
arranged by the American Mathematical Society and held at the
University of Colorado for the period July 24 through August 19,
1960. The Seminar was under the sponsorship of the National
Science Foundation, Office of Naval Research, Atomic Energy
Commission, and the Office of Ordnance Research.

For many years there was an increasing barrier between mathematics
and modern physics. The separation of these two fields was regret-
table from the point of view of each-physical theories were largely
isolated from the newer advances in mathematics, and mathematics
itself lacked contact with one of the most stimulating intellectual
developments of our times. During recent years, however, mathe-
maticians and physicists have displayed alacrity for mutual exchange.
This Seminar was designed to enlarge the much-needed contact which
has begun to develop.

The purpose of the Seminar was primarily instructional, with
emphasis on basic courses in classical quantum theory, quantum
theory of fields and elementary particles, and statistical physics,
supplemented by lectures specially planned to complement them.
The publication of these volumes is intended to extend the same
information presented at the Seminar to a much wider public than
was privileged to actually attend, while at the same time serving as a
permanent reference for those who did attend.

Following are members of a committee who organized the program
of the Seminar:

Kurt 0. Friedrichs, Chairman
Mark Kac
Menahem M. SchitTer
George E. Uhlenbeck
Eugene P. Wigner

Local arrangements, including the social and recreational program,
V



vi FOREWORD

were organized by a committee from the University of Colorado, as
follows:

Charles A. Hutchinson
Robert W. Ellingwood

The enduring vitality and enthusiasm of the chairmen, and the
cooperation of other members of the university staff, made the stay
of the participants extremely pleasant; and the four agencies which
supplied financial support, as acknowledged on the copyright page,
together with the Admissions Committee, consisting of Bernard
Friedman, Wilfred Kaplan, and Kurt 0. Friedrichs, Chairman, also
contributed immeasurably to the successful execution of the plans for
the Seminar.

The Seminar opened with an address given by Professor Mark Kac,
Department of Mathematics, Cornell University, on the subject "A
Mathematician's Look at Physics: What Sets us Apart and What
May Bring us Together." Afternoons were purposely kept free to
give participants a chance to engage in informal seminars and
discussions among themselves and with the distinguished speakers on
the program.

Editorial Committee

V. BARGMANN

G. UHLENBECK
M. KAC, CHAIRMAN
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Preface

This book gives the approximate text of a course of eight lectures
from combined rigorous mathematical and physically conceptual view-
points, supplemented by two more purely mathematical lectures. The
main purpose is to provide an up-to-date introduction, for the mathe-
matically trained reader, to the central mathematical features of
fundamental relativistic physics. While we have aimed for accuracy
and scope of perspective rather than for completeness of detail, this
purpose itself seemed better served by the inclusion of several detailed
discussions and the omission of any significant treatment of many
important topics, whose inclusion would not in our judgement have
altered the essential form-which we have attempted to delineate. In
particular, the theory is very largely presented in terms of Bose-
Einstein quantum fields, Fermi-Dirac fields being brought in only very
briefly and in a descriptive way.

A relatively informal lecture style seemed the best adapted to the
quite challenging task of formulating the mathematically intelligible
essence of such a complex and sophisticated subject as quantum field
and particle theory with the requisite conciseness. No attempt has
been made to change this form of presentation in the printed text, in
view of its apparent appropriateness for this task.

While the mathematical beauty and inevitability of many parts of
modern relativistic physics are now clearly visible, there remain
unresolved foundational questions, which in fact dominate the scientific
area being considered. It is our conviction that quantum field theory,
at least, is on the verge of becoming mathematically firmly established,
and will in fact in a few years be recognized as closely parallel to the
analytical theory of functionals over infinite-dimensional non-linear
manifolds admitting group-invariant differential-geometric structures.
in any event, we hope to have given some measure of the recent
advances in the subject, and to have conveyed some feeling for the

ix
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magnificent intuitive scientific structure which has yet to be fully
understood mathematically.

Special thanks are due Leonard Gross and David Shale for scientifi-
cally useful comments, as well as to the former for help with the
original notes.



INTRODUCTION

Varieties of Approaches

To clarify our general intentions and purposes in these chapters, let
us review very briefly the varieties of approaches to quantum fields and
particles which are currently popular. Although the ultimate aims of
many theoreticians are rather similar, involving mainly an increase in
our understanding of fundamental physical phenomena, their shorter-
term objectives are quite varied, so much so that fundamental theoreti-
cal physics has a rather fragmented appearance at present.

The traditional approach effectively regarded theoretical physics as
a game whose purpose was to derive from simple theoretical principles
the abstruse numbers obtained in laboratory experiments on particles;
this description is a variant of one due to Dirac. The great success of
Dirac, Heisenberg, Schrodinger. and many others at this game during
the late twenties laid incidentally the foundations of modern quantum
theory. But in the past thirty years the game has proved so difficult
that people have generally feit forced to modify its rules in one way or
another.

The success of the renormalization theory initiated in clear-cut form
chiefly by Feynman, Schwinger, and Tomonaga, in computing with
great accuracy quantum radiation effects on the electron, represents the
most remarkable theoretical explication of fundamental physical data
in the past thirty years. It was based however on a certain relaxation
of the rules permitting the use of an ad hoc argument at a crucial stage
in the computation to resolve a serious difficulty, i.e. eliminate the so-
called divergences to which the theory and mathematical procedure
led. This remains the case today despite the considerable simplifica-
tions and clarifications due to Dyson, Ward, Salam, van Hove and his
associates, and many others.

More recently the "axiomatic" schools which have emerged from
this situation have surpassed the traditional approach in logical
clarity, utilizing an explicit rather than implicit statement of their
fundamental principles. They have concentrated on increasing un-
derstanding of the meaning, scope, and general implications of

xi



Xii I. E. SEGAL

quantum field theory, and have effectively given up the attempt to
compute experimental data from theoretical principles. The most
active of these "schools," including notably that of KAll6n-Wightman
and that of Lehmann-Symanzik-Zimmermann (to both of which
Haag and Jost have made significant contributions), are rather
mathematical in spirit but do not always distinguish between mathe-
matically rigorous and partially heuristic definitions and. results.
From an overall point of view, however, the main problem here is the
-lack as yet of non-trivial examples of systems satisfying the, axioms,
i.e. systems involving real emission and absorption of particles.

Roughly at the other end of the theoretical spectrum from the axio-
matic schools are those concerned chiefly with the correlation of
experimental data by means of approximations to and heuristic
techniques in quantum field theory of varying degrees of physical
motivation and, unfortunately, quite uncertain reliability. In any
event, the ideas of Chew, Goldberger, and Low have proved to be
particularly useful in reducing the large and rapidly growing volume
of experimental data in nuclear physics. The technique of so-called
"dispersion relations" has been widely used for a substantial time, and
some of the relations have been supported by experimental evidence,
but a clear-cut formulation and derivation of the relations within a
rigorous mathematical framework has not yet been given, and it also
seems quite difficult in the nature of things to make a conclusive
experimental test of the relations, since, unlike the familiar relations
that have been so tested, the checking of an individual numerical
equality in a dispersion relation necessarily involves measurements at
all, including arbitrarily high, energies.

These three schools have certain connections, a particularly interest-
ing and actively investigated one being that between the empirically-
oriented and the axiomatic schools via the theory of dispersion
relations. But on the whole there does not appear to be much prospect
for their fundamental unification in the foreseeable future. On the
other hand, until the elementary question, of what, precisely, a quantum
field theory consists of, is answered in satisfactory physical and
mathematical terms, there are insufficient rational grounds for
pessimism or optimism.

A pure mathematician who is interested in fundamental physic•s will
see at once that there is another possible approach, that of building up
on the bedrock of rigorous mathematics, while keeping as close as
possible to the ideas that emerge from empirical practice. Ten years
ago such an approach might have seemed very naive, but by now it is
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clear that the rigor and mathematical method, far from proving
burdensome, enable one to deal simply and definitely, if in a rather
sophisticated way, with some of the really significant theoretical
questions; and that the close connection between that which is mathe-
matically viable and physically meaningful is a rather general feature
of the situation, and not limited to such cases as that treated by Bohr
and Rosenfeld in their classical work on the measurability of the
electromagnetic field.

Our purpose here is mainly to treat those parts of the theory of fields
and particles which are now available in a rigorous, compact, and
general form. The solution of the relevant problems has tended to
lead to new problems, some of which we shall describe. We shall have
to pay the price of increasing at least temporarily the difficulty of
making a dictionary for translating between experimental physics and
mathematics. We must not expect too much direct physical. contact
too soon, in view of the very substantial complications inherent in any
comprehensive theory conceivably applicable to elementary particle
interactions. But the pursuit of this game of capturing modern physical
ideas and principles in rigorous and simple mathematics is a reasonable
and interesting activity in itself. We think moreover that there are now
visible'lines of development offering definite promise of dealing
effectively with physically interesting relativistic interactions.

From a purely mathematical point of view the main mathematical
fields pertinent to the general theory of particles and fields are:

I. Operator theory (especially operator algebras).
2. Theory of group representations (especially of the Lorentz and

other physical symmetry groups).
3. Theory of functionals.
4. Theory of partial differential equations.

Large parts of these subjects are relevant here, in fact a year's course
on eachof them would not be amiss. Of course, here we can treat only
a few aspects of special relevance. We shall say only a little about
operator theory, and less about group representations, as these will be
treated in Professor Mackey's chapters. We shall discuss analysis in
*function space, because of its relevance and relative novelty, and note
its relation to the line of development originating with the work of
Wiener on -Brownian motion. We shall do little with the theory of
partial differential equations, partly because the aspects of the theory
of greatest relevance-the global spectral theory of variable coefficient
and non-linear hyperbolic equations-arc as yet rather undeveloped.



CHAPTER 1

Quantum Phenomenology

We begin by treating the notion of a physical system, keeping as
closely as possible to the use of concepts having a fairly direct empirical
or physically intuitive significance. The fundamental object associated
with a physical system may be taken either as an observable or as a
state. The former concept seems simpler from a naive point of view,
and leads to a viable theory in terms of which state may be treated
quite effectively, so we shall start with observable as a fundamental
undefined notion.

Wc should mention parenthetically that the early formulation of
quantum phenomenology asserted that: (I) an observable is a self-
adjoint operator in a Hilbert space, (2) a state is a vector ', in this
space- the connection between (I) and (2) being that the expectation
value of A in the state 0 is (AO,, 0). These "axioms" are technically
simple, but they are thoroughly unintuitive and ad hoc. In addition, it
has turned out recently that they are technically really effective only
in the case of systems of a finite number of degrees of freedom. In
fact certain of the ultraviolet divergences of quantum field theory
result indirectly from the inadequacy of the older phenomenology.
Therefore there is ample reason, both foundational and technical, to
prefer the more recent form, which is given below.

Now both physically and mathematically it appears that the bounded
observables play the fundamental role, the unbounded ones being
readily dealt with in terms of the bounded ones, as far as foundational
purposes are concerned. Taking e.g. a one-dimensional quantum-
mechanical particle, no given finite physical apparatus can conceivably
accurately measure the momentum p, once this momentum goes beyond
a certain limit. Now one may construct larger and more refined
apparatus, and thereby for each finite it, measure F,(p), where
F,(x) = x for Jxl _5 i and F(x) = say n sgn n for lxi > n. That is,
one can measure the infinite sequence of observables F,(p), F2(p), •.,
each of which is bounded; and p itself is not measurable directly but
only as a limit of such a sequence, and so involves an unphysical
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infinity of experiments. On the other hand, mathematically we are en-
titled to look ahead a bit, to the first axioms of early quantum pheno-
menology, to the effect that an observable is a self-adjoint operator in
a Hilbert space. The well-known great difficulty of performing effec-
tively simple algebraic operations on non-commuting self-adjoint
operators together with the various possibilities for treating unbounded
in terms of bounded operators, strongly suggest the limitation to the
bounded ones.

So we consider to begin with only the bounded observables of the
given physical system. From an intuitive point of view it is clear that
if A is a bounded observable and a is a real number, then aA is a
bounded observable; it is measured simply by measuring A and multi-
plying the result by a. Similarly A2 is a bounded observable, measured
by measuring A and squaring the result. Now if B is another observ-
able, the sum A + B and product AB can be similarly defined only
when A and B are simultaneously observable. We may however de-
fine A + B in a more indirect physical fashion as that observable whose
expectation in any state is the sum of the expectations of A and of B.
Intuitively it is plausible that an observable may be reconstructed from
its expectation values in all states; alternatively this definition may be
regarded as a restriction on the states of the system. On the other
hand, the product AB may not be defined in a similar fashion because
it is not even true for simultaneously observable A and B that the
expectation value of the product is the product of the expectation
values (as is familiar in the theory of probability, whose observables
are usually called "random variables").

Thus it is physically reasonable to postulate that the bounded
observables of the physical system form a type of algebra, the relevant
operations being multiplication by scalars, squaring and addition of
observables, but not multiplication in general. However, in view of
the indirect character of the definition of addition, the full reasonable-
ness of the assumption that two observables can be added will follow
only if the theory which is built up from such assumptions has as a
logical consequence the rationalizing assumptions that the expectation
value of the sum of two observables is the sum of their expectation
values, in a particular state, and that any observable can be recovered
from its expectation values.

In addition it is reasonable to assume that there is a unit observable
I whose expectation value in every state is unity, and that the usual
rules for the reduction of measurements of simultaneously measurable
observables are valid. This last requirement turns out to be needed



QUANTUM PHENOMENOLOGY 3

only in the form
A'o A' = A?+8, (aA)l =- ac/A'

if the pseudo-product A o B is defined by the equation

A o B I [(A + B)2 - (A - B)2 1,

and A• is defined recursively by the equations

A' I. A' = A ,-A'".

Since A o B coincides with the phenomenological product described
above when A and B are simultaneously observable, the present
requirements have immediate intuitive validations.

Thus we have rationalized the following mathematical axiom:

PHENOMENOLO(ICAL POSTULATE, AL(GEBRAIC PART: A physicalsystem is
a collection of objects, called (bounded) observables, for which operations
of multiplication hy' a real number, squaring, and addition are defined, and
satisfy the usual assumptions for a linear vector space as well as those
involving the squaring operation given above.

As a mathematical example, consider the set of all bounded hermitian
(linear, everywhere defined) operators on a Hilbert space. It is obvious
that with the usual algebraic operations the foregoing postulate is
satisfied. It may be helpful to note incidentally that the conventional
product of operators is not meaningful within this system, since the
product of two hermitian operators will again be hermitian only when
they commute; while the pseudo-product A , B = (AB + BA)/2 in the
present case has for non-commuting hermitian A and B no physical
interpretation.

Now the main result we need in the present connection is the

BASIC PHENOMENOL(MIlCAL PRINCIPLE: Any physical system is deter-
mined in all its physically observable aspects by its algebra of bounded
observables.

That is to say, two systems whose bounded observables may be
brought into one-to-one correspondence, in such a fashion that sums,
squares, and products by real numbers correspond, are physically
identical-apart from the labelling of the observables.

To explain more precisely what is meant by a "physically observable
aspect," let us introduce the key notions of state, pure state, and
spectral (exact possible) value of an observable. From an empirical
standpoint, a state E exists only as a rule which assigns to each bounded
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observable its expectation value in the state; any possible metaphysical
distinction between the state and the corresponding functional on the
observables is irrelevant for empirical objectives. Accordingly, we
define a state as this functional and the following properties of a state
E have a clear intuitional validity:

I. Linearity: E(A + B) = E(A) + E(B),
E(aA) = a E(A),

if A and B are any bounded observables and a is a real number.
2. Positivity: E(A2)>O.

3. Normalization: E()= 1.
Thus on a rather conservative physical basis a state must be some

sort of normalized positive linear functional on the observables. For
basic phenomenological purposes this is all that turns out to be re-
quired for a state, and so we follow von Neumann in defining a state as
such a functional.

Now if a system is in a state E with probability a and in a state E'
with probability a', where a + a' = I and a > 0, a' > 0, the effective
state of the system is E', where

E'(A) = aE(A) + a'E'(A).

The state E' is called a mixture of the states E and E' and following
Weyl we call a state pure if it cannot be represented as a mixture of two
distinct states. It is evident that it is the pure state that plays the
fundamental part in non-statistical mechanics; an experiment of
maximal theoretical accuracy will yield a pure state of the system.

To clarify these notions, consider briefly the system of all bounded
hermitian operators in a Hilbert space Xr. If 0 is any unit vector in *,,
the functional E defined by the equation

E(A) = (A0, ,)

is easily seen to be a state. It is actually a pure state, as can be seen in
a fashion that will be indicated later. In many conventional treat-
ments of quantum mechanics, the vector 0 is called a state, but it is
evidently of quite another character from the functional E which is
here defined as a state. In particular 0 is incompletely physically
observable, any multiple of u by a number of unit modulus being
physically indistinguishable from it. Here & will be referred to as a
state vector or wave function for the state E. Incidentally, it is only in
the trivial case of the finite-dimensional Hilbert space X, that every
pure state has the foregoing form; for an infinite-dimensional space
there are others, which can arise, e.g., from the continuous spectrum
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which may manifest itself for operators in an infinite-dimensional
space.

An example of a mixed state is provided by one of the form

E(A) = tr (AD),
where D is a non-negative self-adjoint operator of absolutely con-
vergent trace, and total trace unity. D is then uniquely determined by
E and is called the "von Neumann density operator (matrix)." Such a
state is pure if and only if D is of unit rank, in which case it arises from
a wave function in the fashion just indicated.

To arrive at the notion of spectral value, the variance of an observ-
able A in a state E may be reasonably defined as the quantity E(A2) -

E(A) 2, which is automatically non-negative by virtue of the positivity
of the functional E. In line with this, A may be said to have an exact
value in the state E in case its variance vanishes; and the values E(A)
of A in all such states designated as the spectrum of the observable A.

Now it is clear from the definitions of state, pure state, and spectral
value, that they are wholly determined by the algebra of bounded
observables. But this is significant only if states and pure states exist
in ample number, and if spectral values exist, and relate to states in the
usual probabilistic fashion (i.e. the expectation of the observables is the
average of the spectral values with respect to a probability distribution
determined by the state), etc. To prove such results the phenomeno-
logical postulate above must be supplemented by a postulate making
possible the application of analytical methods.

To arrive at a physically meaningful postulate that will be mathe-
matically effective, consider the properties which may be anticipated
for the bounds of the observables, whose finiteness has not thus far
been utilized. The bound represents, in an intuitive physical way, the
greatest possible absolute value for the observable. This interpretation
together with a quite moderate amount of reflection shows the physical
basis for the

PHENOMENOLOUICAL POSTULATE, ANALYTICAL PART: To each observ-
able A is assigned a "bound," designated Ii A l, in such a way that the
following conditions are satisfied:

i. Ail 0 and HAIl =0 if and only if A = 0.
ii. -li 1 -Ial llAII and IIA + B1l <= IAAII + IIBiI.

iii. The collection of all observables is complete with respect to the
metric determined by the bound, i.e. if A,, A 2,.' is a sequence of
observables such that jAm - A. 1- - 0 as m, n - oo, then there exists
an observable A such that 1A1, - All -- 0.
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iv. 11A211 = IIAil and 11A 2 B2hh 1 Max [AhA2J, 11B211].
v. A2 is a continuous function of A, i.e. if A, --) A, then A42 - A2.

Conditions i and ii have a direct physical justification. The condi-
tion iii is virtually a matter of convenience, for an incomplete system
could always be completed; an observable A could be defined if neces-
sary, its expectation value in a state being explicitly obtainable as the
limits of the expectation values of the A,. Condition iv takes a slight
amount of reflection for its intuitive justification. Condition v merely
asserts that if two observables are close (as measured by the bound of
their difference) then so are their squares.

For an example, consider again the system of all bounded hermitian
operators on a Hilbert space, with I!A j! defined as the usual bound of
the operator A. That is, J!All is the least upper bound of the Hilbert
space norms I'A0b as ' varies over all unit vectors, or equivalently, for
hermitian operators, of [(Ae,, 0)1. All of the foregoing conditions
follow almost trivially.

On the strength of the combined algebraic and analytical parts of the
phenomenological postulates, all of the physically plausible and con-
ventionally accepted principles of quantum phenomenology may be
rigorously established. The proofs are based on now familiar results
and methods of abstract analysis, including notably the Stone-Gelfand
representation theory and such results in linear analysis as the Hahn-
Banach, Krein-Milman, and Riesz-Markoff theorems.

Among the results are:
I. The~re exists an ample supply of pure states, in the sense that two

observables having the same expectation values in all pure states must be
identical. In particular, the justification for the assumption that two
observables can be added is completed.

2. Any observable admits a closed set of spectral values, and the
expectation of the observable in any state is the average of these spectral
values with respect to a probability distribution on them canonically
determined by the state. Specifically, this distribution may be defined
as that with characteristic function E(e"tA), where E is the state and A
the observable (here eP'A is defined in the obvious fashion, or alter-
natively, E(ehA) may be replaced by E(cos tA) + iE(sin tA), where
cos tA and sin tA are defined by the demonstrably convergent, con-
ventional power series expansions). It is not difficult to see that this
function (of t) is positive definite and the Fourier-Stieltjes transform of
a probability distribution.

3. The smallest closed system of observables (in the sense of the
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phenomenological postulates) containing a given observable A is in 1-1
algebraic correspondence with the algebr4 of all continuous functions on
the spectrum of A. This gives a spectral representation for observables
quite analogous to that for self-adjoint operators on a Hilbert space, in
fact the latter may be in part deduced from the former. From this
together with the Riesz-Markoff representation theorem for positive
linear functionals on spaces of continuous functions a definition for the
probability distribution on the spectral values of an observable, in a
given state, follows directly without consideration of the characteristic
function.

In the case of the system of all bounded hermitian operators and a
pure state arising from a wave function 0, in the fashion indicated
above, the conventional definition for the probability distribution
which assigns to the operator with spectral resolution J AdEA the
probability distribution with element d1!E' J 2 can readily be shown to
be in agreement with the present one, which depends only on the alge-
bra of 0h1 operators, and not at all on the specific fashion in which the
operators are represented on a Hilbert space.

There is one further result of methodological importance. In
mathematical and physical practice it is convenient, and possibly in-
evitable in the nature of things, to restrict the scope of the physical
system under consideration. It is conceivable that when this limited
physical system is replaced by a larger system, e.g. the "universe," the
physical existence of states and/or the spectral values of observables
might be affected. There might for example be a selection rule pro-
hibiting certain pure states of the convenient subsystem because they
could not be realized in the larger system from which the subsystem
could not really be isolated. This would make the situation a very
complicated one, and it is therefore good to know that it is mathe-
matically demonstrable that this difficulty cannot arise:

4. Any pure state ovia physical sy'stem which is a subsystem of a larger
system can be realized in a pure state of the larger system. (That is,
there exists a pure state of the larger system which coincides on the
subsystem with the given pure state.) In particular, the spectral values
of an observable are independent of the algebra of observables of
which it is considered to be a member-as is essentially true also of
probability distributions for the spectral values.

5. The bound of an observable A may be defined purely algebraically
as the least real number x such that a! - A = B2 and al + A = C' for
suitable observables B and C. Intuitively, this defines 1IA 11 as the least
a such that al ± A is non-negative, as is evidently intuitively justifiable.
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(We could in fact have given a formally algebraic set of axioms by
introducing the bound in this way, etc., but there is no real advantage
in this.) Thereby we complete the proof of the basic phenomenological
principle stated earlier, that all purely phenomenological features of a
physical system are determined by the algebra of the bounded observ-
ables.

The question now arises as to the character of the mathematical
systems satisfying the phenomenological postulates. It might be
extremely difficult to classify all such systems, and not necessarily re-
warding, for the exclusive relevant prototype is the kind of system in
which the pseudo-product A o B is bilinear in A and B, or more specially,
which consists of all self-adjoint elements C = C* of an associative
algebra on which there is defined an adjunction operation C -- C*
satisfying the usual type of requirements (C** = C, (a)c = d*C, C*C
positive in a certain sense for C -# 0). These assumptions have no
quantitative empirical justification whatsoever, but they are simple and
natural from a purely mathematical viewpoint, and it is interesting that
they force the observables to have interpretations as hermitian opera-
tors in a Hilbert space, there being in general, however, nothing unique
about the interpretation or the Hilbert space. In the case where it is
assumed only that the pseudo-product is bilinear the situation has not
yet been fully analyzed but Sherman has shown that the exceptional
simple Jordan algebra of Albert satisfies the postulates. There is at
present no evidence of any physical relevance for this system, whose
finite-dimensionality also sharply limits its conceptual interest.

All definite theoretical systems of observables that have thus far been
proposed are in fact representable in terms of operators on a real or
complex Hilbert space, and we may as well restrict ourselves at this
point to such systems, of which there are many. To be more specific,
we define as a concrete C*-algebra V/, an algebra of bounded linear
operators on a real or complex Hilbert space, which is closed under the
adjunction operation, and also in the uniform topology (i.e. contains
all limits of uniformly convergent sequences of operators in df, where
A, converges to A uniformly in case 11A, - A 1!-. 0, the operator
bound being defined as above). Now two concrete C*-algebras may
be algebraically isomorphic (in one-to-one correspondence in a
fashion making sums, products, and adjoints correspond) without there
being any simple connection whatsoever between the Hilbert spaces on
which the respective operators act. The relevant object here is an
abstract C*-algebra, which may be defined as an equivalence class of
C*-algebras under algebraic isomorphism. The set of all self-adjoint
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elements of an abstract C*-algebra forms then a physical system, as
defined above, the bound being defined in the algebraic manner
indicated above.

The complete description of a physical system involves however not
only the statement of the mathematical character of the algebra of
bounded observables, but also a labelling of the observables, a kind of
physical-mathematical dictionary. This is clearly visible e.g. in the
fact that in elementary quantum mechanics it is assumed that the
bounded observables consist of all bounded hermitian operators on a
countably-dimensional Hilbert space, irrespective of the number of
degrees of freedom of the system.

Now there is evidently no mathematical labelling scheme that will
be applicable to a perfectly general C*-algebra of observables. How-
ever the physically relevant C*-algebras all involve implicitly or ex-
plicitly a labelling scheme whose mathematical structure is of essential
importance in the theory. In its simplest form this labelling involves
the designation of certain observables as "canonical," or as "field
variables." The treatment of these labelling matters involves addi-
tional elements of mathematical structure of quite a different character
from those of the present lecture, and will be gone into in the next
lecture. We can however give a rough indication of what is involved
as well as illustrate pure phenomenology by considering briefly the
Heisenberg commutation relations in one dimension.

In their original form

h
pq -- qp - -:,

I

the commutation rule left open considerable room for irrelevant
mathematical pathology and it is clear by now that it is the Weyl form
of the rule, where units are used for which h = I,

elap et'Q = e"0 e'Oq el-P

(a and P being arbitrary real numbers), that is relevant in a rigorous
approach. A canonical pair is, then, an ordered pair (p, q) of self-
adjoint operators in a complex Hilbert space which satisfies the cited
(Weyl) relations. The Schr6dinger representation

e ap: f(x) -t f(x + a), eGq : f(x) --* eiazf(x)

(f/an arbitrary square-integrable function on (- oo, oo)) in the Hilbert
space .' = L 2( - r, 00), shows that canonical pairs exist. Here we
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use Stone's theorem that a continuous one-parameter unitary group,
such as the group

U,: flx)-, f(x + a),

has a self-adjoint generator; the continuity here is in the weak topology,
which is equivalent to the assertion that (U/ I, g) is a continuous func-
tion of a for all f and g in .#.

Consider now the question of what should be the bounded observ-
ables associated with a canonical pair. Conventionally one regards all
bounded hermitian operators as such, in the case of the Schr6dinger
representation, in general in a situation of this sort, people commonly
form the "ring of operators" in the sense of Murray and von Neumann
that is generated by the basic operators, and regard the self-adjoint
members of this ring as observables. This ring of operators consists
of all bounded "functions" of the basic operators, a function of a set
of operators being defined as an operator that commutes with every
unitary operator U as well as with U* for all U commuting with every
operator in the given set. The Schr6dinger representation is irre-
ducible (i.e. there is no non-trivial closed linear subspace of
L2( - x, o) that is invariant under all the e""P and etBQ), as follows
from the "ergodicity" of the action of the group of all translations on
the reals, i.e. the absence of any non-trivial measurable sets invariant
within sets of measure zero under all translations. Now it follows
from the von Neumann commutor theorem about rings of operators
that no unitary operator can commute with both p and q in the
Schr6dinger representation other than the trivial operators al, where a
is a constant of unit modulus. It follows in turn that every bounded
operator on the representation space is a function of p and q.

Alternatively, one may define "ring of operators" as a collection of
bounded operators, including the identity operator 1, which is closed
under the usual algebraic operations of addition, multiplication, and
adjunction, and also closed in the weak topology. The latter is defined
by designating an operator as a limit point of a set of operators in case
any finite set of matrix elements of the operator can be matched within
an arbitrary .by the matrix elements of some operator in the set. The
von Neumann commutor theorem, one version of which is to the
effect that any operator commuting with all unitary operators commut-
ing with every operator in a given ring of operators, is itself in the ring,
shows that the ring of operators generated by a set of bounded
operators as dcfined above is the same as the smallest ring of operators
containing the set. Thereby the ring of operators generated by the
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canonical pair may also be defined as the set of all limits in the weak
topology of the ring of all finite linear combinations of the

etap e iq.

The point of this technical digression is partly informational, and
partly to indicate how remote tfie operators in the weakly closed ring
generated by a set of operators may be from any apparent empirical
connection with the basic set. This somewhat unphysical character
for the weakly closed ring does not cause any harm in the case of
systems of a finite number of degrees of freedom, but it does cause
difficulty in the case of infinite systems, the discrepancy being due to,
or, more precisely, having a counterpart in, the validity of the Stone-
von Neumann Theorem on the uniqueness of the Schrodinger operators
in the one case and its failure in the other. We shall discuss this more
fully in the next chapter. It may nevertheless be useful to sketch here
briefly how one could deal with the present case in a physically sounder
fashion.

Iff(a, fl) is an integrable function of the real variables a and 9, then

T = f fcxp [i(ap + /3q)If(-. fl) da d#3

will be a well-defined bounded operator. (Here we use the definition,
f(A) -- (A), if A is an operator whose closure A is normal, andf is a
Baire function, to avoid possible ambiguity due to the lack of closure
of ap + flq.) It is clear that T is constructed from p and q in a relatively
explicit manner and so may be designated as an explicit function of p
and q. The collection of all such T, together with their uniform limits
(uniform convergence of observables having direct physical meaning)
form a more conservative algebra of observables for a one-dimensional
quantum-mechanical system than the much larger weakly closed ring
described above.

There is an alternative definition for the collection of observables
just designated which serves to reinforce its propriety. It may be
argued, from an intuitional physical standpoint, that since large values
of p and q are measurable only with increasing difficulty, the real
observables are not the p or q or exponentials, which depend upon all
values of p or q, but "cut-off" functions '(p) orf(q), wherefis a con-
tinuous function that is constant outside of a finite interval. For
greater symmetry and smoothness we may deal with the products
f(p)g(q), where f and g are both of the type described; the smallest
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C*-algebra containing all of these can be shown to be the same as that
defined in the preceding paragraph (in particular, if p and q are inter-
changed the same algebra is obtained). It is convenient and creates no
difficulty to add I to the algebra, obtaining an algebra whose self-
adjoint elements satisfy the phenomenological postulates.

The elements of this algebra of, say, smooth observables, are evi-
dently labelled in a relatively clear-cut way in terms of p and q. As a
pure algebra it consists of all completely continuous operators on the
Schrddinger representation space, apart from additive multiples of I.
It may be shown that the states of this algebra (excluding the multiples
of 1, which are inessential, for simplicity) are regular in having the form

E(A) = tr (AD),

where D is a hermitian operator of absolutely convergent trace (i.e.
has purely discrete spectrum, with an absolutely convergent series of
proper values, taking account of multiplicities). It is reassuring that
these are precisely the states that are generally considered to be
physically truly realizable. Of course, for an arbitrary bounded
hermitian operator A, tr (AD) will exist, and may be called the ex-
pectation value of A in the state E, but this is made possible by the
felicity of the mathematics, rather than indicated by any physical
considerations. In particular, while the conventional practice of re-
garding all bounded hermitian operators as observable is thereby
justified in part, it is important to recognize that not all states of the
larger system will be truly physically realizable, the proper state space
being the same as that of the smaller system, and consisting only of
those of the simple analytical form indicated.

Notes to Chapter I

I. Empirical vs. conceptual vs. theoretical observables. One must
guard against an oversimplified or too dogmatic a view of the concept
of observable. Whether certain analytical expressions occurring in
theoretical physics are in principle capable of empirical measurement
can be quite a difficult .nd controversial question. Nevertheless, many
of these expressions would qualify as conceptual observables-among
them, e.g., the electromagnetic field strength averaged in the fashion
described by Bohr and Rosenfeld, which ingenuity and technical ad-
vance may possibly render observable, although at this time no direct
observation has been made or proposed. It is difficult to imagine a
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useful quantum field theory which does not incorporate such con-
ceptual observables in its formalism, in some way; the present chapters
take a relatively conservative stand in assuming only that a certain
physically restricted class of bounded functions of such field averages
are conceptual observables, as we shall indicate more specifically later.

There are other cnmplications. notably the indirect way in which the
theoretical counterparts to certain important empirical observables
(the S-matriy., the energy, and other generators of the fundamental
symmetry group commuting with the energy) come to have inter-
pretations as concrete operators, being on a somewhat different
footing from the explicit functions of field averages. This does not
alter the essential validity of the foregoing postulates, signifying only
that they need to be supplemented by kinematical, dynamical, and
statistical considerations. These will emerge later in our treatment of
quantum fields; for brevity we must forego the consideration of such
more general aspects as are accessible in a general physical system.

2. Relative priority of states and observables. Whether observables
or states are more fundamental is somewhat parallel to the same
question for chickens and eggs. Leaving aside metaphysics, either
notion has certain distinctive advantages as a foundational concept, but
no analytical treatment starting from the states exists as yet which is
of the same order of comprehensiveness and applicability as that
starting from the observables. In particular, the work of Birkhoff and
von Neumann (1936) and of Mackey (1957), in which thc states play
the fundamental role. has not yet been developed to the point where
their serviceability as possible frameworks for quantum field pheno-
menology is apparent.

3. Operator algebras and states. An important technical advantage
of the observables as a starting point for phenomenology is that the
theory of operator algebras, which has reached a point of considerable
cogency after a quarter century of intensive development, can be
brought directly to bear, at least with the present formulation of the
concept.

The first clear-cut work in this direction is that of von Neumann,
culminating in his 1936 paper, while on the purely mathematical side
Stone's work on representation and commutative spectral theory in
the late 30s and early 40s was particularly stimulating and relevant.
A striking result which followed (1943) was Gelfand and Neumark's
abstract algebraic characterization of C*-algebra. While this result is
expendable from a physical standpoint, the paper was influential in
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encouraging the study of C*-algebras, which have turned out to be
more useful for quantum phenomenology than the weakly closed rings
whose study was initiated by von Neumann and Murray. While the
distinction between an algebra of operators that is uniformly closed
and one that is weakly closed may seem rather technical, it turns out
to be vital, as is not so surprising when one considers that uniform
convergence of observables has a direct physical interpretation, while
weak convergence has only analytical significance.

An aspect of the theory of C*-algebras which is important both
mathematically and in relation to quantum mechanics is the duality
between states and representations. We shall have occasion to de-
scribe and use later the mutual correspondence between states and
representations developed in a relevant form by Segal (1947a).

References to Chapter I

The original articles of von Neumann (1927) are in some ways the
best account of the origin of the material in this chapter, although (1932)
subsumes most of these earlier papers. The paper of Segal (1947b) on
which this chapter is largely based brought together some of the ideas
of von Neumann (1936) with those of the representation theory of
Stone, Gelfand, and others. The work of Lowdenslager and Sherman
develops aspects of Segal's approach. An open question remaining
here is that of the existence of "simple" infinite-dimensional Jordan
algebras satisfying the given postulates which are not "special,"
i.e. essentially derivable from an associative algebra.

For associative systems the relevant theory is presented by Segal
(1947a), which includes some material on the notion of maximal
observation due to Dirac and its relation to Weyl's notion (1927) of
pure state.

The extensive literature on C*-algebras and on W*-algebras ( = "von
Neumann algebras," or "rings of operators") is also relevant in a
general way. Especially noteworthy, among the topics not already
mentioned, is the theory of direct integrals of Hilbert spaces, which
while in practice usually avoidable, is important as background
material.



CHAPTER I1

Canonical Quantization

Quantum mechanics of systems with a finite number of degrees of
freedom is often expressed in terms of a finite set pi, q, : p2, q2; .- ;

p.,q,, of mutually commuting canonical pairs. A change in the frame
of reference will change these into a new set of n such pairs. To deal in
a compact and theoretically convenient fashion with all the funda-
mental "canonical variables," it is desirable to reformulate the notion
of canonical system slightly. This reformulation turns out to be help-
ful in making the transition to a system of an infinite number of degrees
of freedom as well as in clarifying the general notion of quantization.

We start from a finite-dimensional real linear vector space L whose
physical interpretation is the classical physical (configuration) space
associated with the system Linder consideration. (Thus for a system of
n particles in 3-dimensional Euclidean space, Y! would be a 3n-
dimensional space.) The contragredient or dual space to Y, i.e. the
space of all linear functionals on Y', will be denoted by Y*. A
quantumi-miechanical canonical .s'yste os'er Y' may be defined in a purely
mathematical manner, as a pair of unitary representations U and V of
the additive groups of Y' and Y'* respectively on a Hilbert space, which
are weakly continuous and satisfy the Weyl relations:

U(x)V(f/) - e'1""V(f)U(x) (x c L, f c 5Y*).

For any such canonical system there exist by Stone's Theorem self-
adjoint operators P(x) and Q(f) such that

U(Ix) = cxp (itP(x)), Vf) =- cxp (iiQ(f)).

These operators arc called the canonical variables of the system. If
e,, e2, • *, e. is a basis for Y- and .f,. f,, , is a dual basis for -*
(i.e. f,(Xk) = ,1k), then

IPRej), e(fj)}, (P(e), Q(A}, '"JP(e,), Q(f.)}

is a sequence of mutually commuting canonical pairs.
'5
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The existence of a canonical system over Y is clear from the existence
of the Schr6dinger representation. Specifically, let J* be the Hilbert
space of all complex-valued functions that are square-integrable with
respect to Lebesgue measure on Yi (which is unique within an in-
essential constant factor) and define

U(x):F(y)- F(y + x),
V(f): F(y) -. 0e°'1F(y),

F being arbitrary in *t'. It is straightforward to verify that the Weyl
relations are satisfied.

Now it is a remarkable and very convenient circumstance (if con-
ceivably physically expendable at the cost of considerable technical
complication) that

ESSENTIAL UNIQUENESS OF CANONICAL SYSTEMS (STONE-VON NEUMANN):

Any canonical system over a finite-dimensional linear configuration
space is, within unitary equivalence, a (discrete) direct sum of copies of
the Schrodinger system.

In other words, for an arbitrary canonical system (U', V') acting on
a Hilbert space .Y", there is a decomposition

J.I d" C4 . "Vr.2 (D ...

of ,r' as a direct sum of subspaces *,•, . -,. • each of which is in-
variant under all the operators of the canonical system; and for each
.#", there is a unitary transformation W, of .4', onto the Schrddinger
representation space ." of square-integrable functions over Y, carrying
the restriction of (U', V') to .i, onto the Schr6dinger (U, V):

U(x)W = wU'(,

V(f)W, = WV'(f), (i = 1, 2,

This is a technical mathematical result; its main physical import is
that any two quantum canonical systems over the same configuration
space Y, irreducible or not, are physically identical. For it follows
from the Stone-von Neumann Theorem that the observables associated
with the two systems are in algebraic isomorphism-this is true whether
the full rings of operators generated by the canonical systems are
employed or only the more manifestly physical C*-algebra of smooth
operators associated with the system. This is true in the case of the
C*-algebra mainly because the formation of a direct sum oýcopies of
an operator does not affect its bound. In the case of the ring of
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operators there is algebraic uniqueness despite the fact that the weak
topology may be affected by the formation of direct sums of copies,
as may be shown by a special analysis.

This represents in a way a comprehensive mathematical explication
of the physical equivalence of the Heisenberg and Schr6dinger formu-
lations of quantum mechanics. In these chapters it will play a role in
simplifying the treatment of the quantization of Bose-Einstein fields.
It makes it possible to speak simply of THE quantum-mechanical
canonical system over a given configuration space -Y'.

Now in the foregoing treatment the canonical P's on the one hand
and the canonical Q's on the other were treated quite separately,
although it is clear that there is a certain symmetry between them.
This distinction between the P's and the Q's has a clear physical basis
in the case of systems of a finite number of degrees of freedom, as well
as in non-relativistic systems more generally, but is devoid of relativistic
significance in the case of quantum fields. In anticipation of the
treatment of fields, it is useful to reformulate the treatment of finite
systems in a way that involves no sharp distinction between the P's and
Q's; and this reformulation leads to some incidental mathematical
simplifications.

Let M denote the direct sum .Y' (D * of Y' with !*; i.e. M' is a
linear vector space a general element of which has two components
(u,f) with u in Y and f in /'*, addition, etc. being componentwise.
-' is then the physical phase space. Let P(.), Q(.), denote a canonical
system over L. For a general vector z in .R of the form z = (uf),
define a self-adjoint operator R(z) by Stone's Theorem as the
self-adjoint generator of the continuous one-parameter unitary
group IS(O), - o < t < oo, where S(t) = exp (itP(u)] exp [itQ(f)]
*exp [- it2f(u)/2]). Applying both sides of this equation to a vector in
the domains of both P(u) and Q(f), differentiating with respect to t,
and then setting t = 0, it results that R(:) c P(u) + Q(f). (In fact
R(z) might have been defined as the closure of P(u) + Q(f), but this is
mathematically relatively inconvenient.) It follows without difficulty
from the definition of R(z) that

e'R('etR(2') = eSB("zX)I 2e1Rz + z), (z' arbitrary)

where

B(z, z') = f'(u) - f(u').

Conversely, from this equation follows the Weyl relations, making
suitable substitutions for z and z'. Thus a canonical system over a
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configuration space .Y may be alternatively defined as a map z -. R(z)
from the associated phase space .4, satisfying the given relation,
i.e. R(z) is for each z a self-adjoint operator in a Hilbert space, the
generalized Weyl relation given above is satisfied, and in addition
ell") is a weakly continuous operator function of the variable z.

In infinitesimal form, this form of the Weyl relation is

[R(z), R(z')] c - iB(z, z').

It is helpful to note also that R(z) depends linearly on z, insofar as its
unbounded character permits:

R(z + z') C R(z) + R(z'),

R(az) = aR(z) (a an arbitrary non-vanishing real number).

It is sometimes convenient, especially in field theory, to introduce
complex canonical variables, which depend actually not only in a real-
linear but also complex-linear fashion on the vector z, which designates
the position in phase space. To arrive at a formulation of phase space
as a complex rather than real-linear manifold, we consider that fre-
quently the configuration space Y is given not merely with the structure
of a real-linear vector space, but also is endowed with a distinguished
metric, e.g. is given as euclidean space, frequently. We suppose then
that there is given on .Y a distinguished real positive definite sym-
metric bilinear form (x, Y) in the vectors x and y of Y.

In this event the dual YO of Y may be canonically mapped onto .Y:
if f is in Y*, there will be a unique element u on Y such that

f(x) = (x, u) (x arbitrary in Y.2).

Writing f = u* and f* = u, then it is clear that u** = u, etc. A
general element : of.€A = 2 i) ., then has the form

= U 4 ) v7

for some u and tv in Y. Now define an operation j on .4t as follows:

j: = - v ®Ou*.

It is readily seen that]j is a real-linear transformation [U(az) = aj(z) for
a real, and j(: + z') = j: + jz' for arbitrary z and z' in .0], and that
j2 = - I, I denoting here the identity transformation. Thus]j behaves

much like multiplication by the complex number i, and it is actually a
well-established and rather familiar fact that one may now, as a matter
of pure algebra, introduce a complex structure in .' by defining the
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action of a general complex number a + ib as follows:

(a + ib)z = az + bjz.

There is no difficulty in verifying that with this definition, 4' becomes
a linear vector space over the complex number field.

Now define for any z in 4' an operator Co(z) by the equation

Co(z) = [R(z) - iR(iz)]/2112

and put C(z) for the closure of Co(:), as can be shown to exist. It can
then be shown that C(z) is essentially a complex-linear function of z,
in contrast to the merely real-linear character of R(z), notably,
C(a:) = aC(z), a an arbitrary non-vanishing complex number. In
addition to this simple algebraic property, the C(z) have somewhat
more convenient commutation relations than the R(-), from an
infinitesimal point of view. To formulate these, it is useful to note that

.4V not only has a distinguished complex structure but actually a
distinguished unitary space structure. Defining S(z, :') = -B(iz, z'),
it is easily verified that S(z, W') = (u', u) + (v, v'), so that S(z, :') is a
positive definite real symmetric form on.4'. It is now straightforward
to verify that the definition
"~"Z Z=,"' = S(z, z') + iB(-, z')

yields a positive definite inner product on .#, which together with the
complex structure on it, rendersA,' a unitary space. The commutation
relations of the C(:) and their Hilbert space adjoints may now be
stated:

[C(:), C(:')] = 0. [C(z), C(:')* I- -, Z. -'

As the simplicity of the relations involving C(z) might suggest, the
so-called creation and annihilation operators C(:) and C(:)* (the
reasons for these designations will appear later in connection with the
particle interpretation for field theory) are very useful in algebraic
analysis of canonical systems, of polynomial expressions in the
canonical variables, etc. On the other hand, these operators are un-
bounded and very far from being normal (or even diagonalizable), and
so are troublesome to deal with in a rigorous analytical way. For this
reason, and since we are here more concerned with foundations than
with computations, we shall generally avoid the use of the C(:).

The main significance of the unitary phase space.A# will only appear
later, in connection with infinite-dimensional systems. It will turn out
to insure the existence of a vacuum state for the associated quantum
system.
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It ought to be noted that there is no physical necessity for a classical
phase space .' to be a linear manifold; this is merely the simplest and
mathematically fundamental case. Intuitively the configuration space
.Y could conceivably be virtually an arbitrary smooth manifold. How
"quantum conditions" may appropriately be introduced for a non-
linear phase space is a natural question at this point, from a logical
viewpoint, but it is convenient to postpone its discussion until the
quantization problem for non-linear fields is taken up later.

Now so far the configuration space Y2 and phase space *f have been
finite-dimensional. What difficulties, if any, appear in the case of an
infinite-dimensional system? The field-theoretic systems which are our
main concern involve in fact infinitely many degrees of freedom.

There is no difficulty in making a formal extension of the basic
concepts involved in canonical systems. lf.,# is an infinite-dimensional
linear space (the phase space of a classical field, say) with a distinguished
skew-symmetric bilinear form B, the notion of canonical system may
be defined just as above. A mathematician will immediately raise the
question of the existence and uniqueness of such; and these turn out to
involve non-trivial mathematical developments.

Physically new difficulties appear in an infinite-dimensional system
in connection with dynamics. The rather celebrated divergences of
field theory represent troubles with the formulation of dynamics, which
have persisted in theoretical physics ever since the original work of
Dirac on quantum fields. Fairly recent mathematical analysis has
indicated that these divergences are closely connected with the mathe-
matical developments relevant to the existence and uniqueness of
canonical systems.

Before going into the infinite-dimensional case in detail, it may be
well to develop rapidly a fairly concrete example of what may be in-
volved. We shall present one which is about as representative as its
relatively elementary and special form permits. First, however, it is
necessary to dispose of the general phenomenological question of the
formulation of dynamics.

In the older conventional theoretical physical treatment of quantum
mechanics, it was essentially taken for granted that a dynamical
transformation was effected by a unitary (or in a few quite special cases,
anti-unitary) transformation. Such a transformation U transforms an
observable (represented by the operator) X into the observable U- IXU,
or the wave function 0 into the wave function U#, and the situation
seemed fundamentally quite simple. More generally, the action of
time on the system (i.e. its temporal development) was given by a
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one-parameter family UJ of such transformations, so that the observ-
able X() at time t in question was given by the equation

X( = U- I X(O)Us

In the case of a system acted upon by no external forces except time-
independent ones, the family U, was a one-parameter group: U U,. =

Ut +".

From the more conservative point of view of the phenomenology
developed in the first chapter, this is a rather ad hoc formulation of
dynamics. On a purely physical, rather than academic analytical,
basis, the main point about a dynamical transformation is that it
preserves the physical algebra of observables. More specifically, if

X-• X', and Y-* Y',

then

X+ Y-_.X' + Y", X 2 -_ X12, and aX -aX' (areal).

In the particular case that these observables are represented by
operators and X' has the form X' = UXU- 1, U being unitary, it is
evident that these conditions are satisfied, but quite conceivably, at
least for someone with a background in pure mathematics, there were
other cases as well.

A physicist most of whose work has been along computational lines
is apt to presume that the foregoing definition of a dynamical trans-
formation-as an automorphism of the algebra of observables, to use
the precise mathematical term-is analytically equivalent to the de-
finition in terms of unitary or anti-unitary operators. This happens to
be actually the case for the algebra of all bounded self-adjoint operators
on a Hilbert space, as is not difficult to establish rigorously. Every
automorphism of this system is implementable by some unitary or
anti-unitary operator---in fact a unique one, it is easily seen, within
multiplication by a scalar. This reduces the question to that of
whether the system of all bounded self-adjoint operators on a Hilbert
space is actually the right one.

Now there is no apparent physical reason why this should be the
case, even in elementary quantum mechanics. It is usually assumed
for mathematical convenience and because it does no visible harm.
But it must be emphasized that it has no empirical basis, and so should
be discarded as soon as it is found to lead to analytical difficulties. It
is fairly evident at this point that it does no great harm in the case of a
canonical system with a finite number of degrees of freedom to assume
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that every bounded self-adjoint operator is observable. The Stone-von
Neumann uniqueness theorem implies that, no matter how the
canonical system is represented by operators in a Hilbert space, every
self-adjoint bounded operator will have a well-defined expectation
value in every regular state, and so will generally behave much like an
observable. The only visible trouble is that not all states, in the
abstract sense of von Neumann's characterization, appear to be truly
physical. However, if one is maximally strict and considers only the
smooth observables described in the first lecture, the algebra of which
has precisely those states which are considered to be the empirically
accessible ones, the situation is not materially affected. The algebra
of smooth observables is in fact in the Schrbdinger representation the
algebra of completely continuous operators on the Hilbert space,
augmented by the identity operator; and every automorphism of the
algebra of self-adjoint elements of this algebra is implementable by an
(essentially unique, as before) unitary or anti-unitary transformation.

Thus it turns out finally that there is no material harm, in the case of
a system of a finite number of degrees of freedom, in making the
assumption that the observables are self-adjoint operators, the dynami-
cal development is given by a one-parameter family of unitary opera-
tors, etc., because of a favorable technical situation. Thereby
"physical intuition" is vindicated, as regards finite systems. But in the
case of infinite systems, which went mathematically unexamined for
many years, the corresponding physical folk theorems have turned out
to be completely false, as established by fully precise mathematical
work. Notably it is not true, as had always been implicitly assumed,
that every or even most dynamical transformations can be implemented
by unitary or anti-unitary operators (when the observables are re-
presented by operators in the apparently most relevant representation).
This is not true for any complicated technical reasons analogous to the
non-differentiability of certain functions, such as might be excludable
on physical grounds like the non-occurrence of similar pathological
situations in nature, but developed rather out of quite simple analytical
reasons, fundamentally. In fact, it seems probable that in field theory
it is only the kinematical transformations, and virtually never the
crucial ones giving the physical temporal development of the system,
that can be implemented by unitary transformations, when the
observables are represented in any explicit fashion (e.g. as operators
on a "bare," or alternatively "free physical" field--cf. below).

To examine a particular case, let us first set up, quickly although
non-covariantly, a sequence of canonical variables Pl, q,, P2, q2,....
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Let R denote the system of all real numbers, and let m be the measure
whose element is (6),-("" exp(-x 2) dx. Let S denote the measure
space consisting of the infinite direct product of a countable set of
copies of the probability space (R, m), and let .; be the Hilbert space
of all complex-valued square-integrable functions over this space. A
general point in S has the form (x1, x2, .'), where the xk are real
numbers, and a general element f of.1 will be a function f(x1 , x 2,...)
of this countable set of real variables. Now let Uk(s) denote, for any
real s, the following unitary transformation on .f:

Uk(s):f(x,, ',. . . .) --'f(xl, . .-., x. + s, . . -) exp[-(2xs + S2)/21.

For any real t, let VP(t) denote the following unitary transformation on

V k ( t : f ( x • , . . . x • . .) ' f ( x ,, . . ., x k , .' ) e. k.) •

It is straightforward to verify that the Weyl relations are satisfied:

UJ(s + 1) = Uk(S)Ud),
Vk(s)Vk(g) = Vk(s + ').
UV(s) Vk(t) = e.1"V•,(t)Vk(S).

Thus we have constructed an infinite canonical system, the self-adjoint
canonical variables being conveniently definable as the self-adjoint
generators of the one parameter groups, say p, generates [Uk(t);

- cr) < g<" 001, and qk generates [Vk(t); - a < t < oo]. (Incident-
ally, these pk and qk differ by factors of 2*( (2) from a certain standard
set of canonical variables, which may be called the zero-interaction
ones, which will be descrik'4 later.)

Now it is frequently convenient in quantum theory to go over from
one set of canonical variables to another (on the same Hilbert space)
satisfying the same commutation relations. According to an old
physical folk theorem any two such canonical systems were related by
a unitary transformation, so thre was no harm in making such a
change of variables. Actually, no explicit Hilbert space on which the
canonical variables acted as self-adjoint operators was ever mentioned.
This made the precise meaning of the theorem elusive, and also made
it impossible to give a counter example to it without first giving a more
precise formulation. However, an explicit Hilbert space has been set
up above, so that it is a perfectly definite mathematical question
whether two given canonical systems, say

pl,qj, p2, q2, and pj,q'i, p2. q2',



24 i. E. SE.AL

are connected by a unitary transformation; i.e. whether there exists a
unitary transformation U on the Hilbert space such that

UpkU 1 = pk, UqkU 1  q' (k = 1, 2, " ").

The most popular transformations are those which are linear in-
homogeneous in the p's and q's. Let us consider the maximally simple
case of a "scale" transformation:

P'k = CPk, q'k = cqk (c > 0).

Now it is mathematically demonstrable that it is only in the trivial case
c = I that this transformation is unitarily implementable. As a matter
of fact, no transformation of the form Pk _-_*f(p), q- g(qk)
(k = 1, 2, .. ) is unitarily implementable except the trivial ones with
fix) ± x and g(x) = ± x. And if the transformation varies with k,
say

Pk = CkPk, qk = cqk (Ck > 0),

then it is necessary and sufficient for unitary implementability that the
following infinite product be convergent:

JJ (2ck/( I +
k

a condition which requires in particular that Ck -' 1, and thereby
excludes all of the actual cases in which the transformation has been
used in practice (cf. e.g. von Neumann's book for an example of this
use).

To gain some insight into the nature of the field-theoretic diver-
gences, let us examine the scale transformation given above more fully,
in relation to the older conventional practice. The existence of an
implementing unitary transformation seemed clear particularly because
it could be written down explicitly:

U = exp (PkQk + QkPk ),

where g is a constant depending on c. To check formally that U has,
at least in a figurative sense, the stated property reduces to a problem
in one dimension that it is actually not difficult to resolve in an
analytically precise way. But in an infinite number of dimensions
there simply is no such operator: the sequence of unitary operators,
[exp (ig01 (PkQk + QkPk)); n = 1, 2, .-. converges, but not to a
unitary operator; the limit, in fact, is 0.
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The figurative operator U provides an example of an essentially
"divergent" operator. The really interesting operators of field theory
are, first of all, those describing the temporal development of the
system. In the so-called "interaction" representation, these are given
in a fairly explicit form which in the case of the transition from time t
to time t + dt are fairly similar to U, the main difference being that
the expression in the canonical operators in the exponential is usually
cubic or linear rather than quadratic. There is every indication that
these formally unitary operators giving the temporal development fail
to exist in any simple and effective mathematical sense, although in
view of their heuristic formulation it is impossible in the nature of
things to prove mathematically that this is the case. Nevertheless
these "divergent" operators may be used in computations to give
accurate numerical results, provided suitable "renormalization" is
effected. How such renormalization may remove apparent infinities
may be seen in the case of the present operator U. Even the matrix
elements (Uf, g) of U between the simplest state vectorsfand g work
out as divergent-they vanish identically, although these matrix elements
should in some sense combine to give a unitary matrix. However, if
the (Uf, g) are multiplied by a suitable "infinite constant," a perfectly
finite, numerically computable, matrix is obtained. Specifically, let
a = (eg(PQ + Q11, I), where I denotes the function identically unity on
the real line, the inner product and P and Q are formulated as above
except that only one copy, rather than a countable set of copies, of
the real line with the designated probability measure is used. There is
no difficulty in computing a explicitly, but its precise value is not
relevant here. It is not at all difficult to see, and this is the point,
that although (Ukf, g)- 0, where U, =exp[ig> (PkQk + QkPkA),

limk, a-k(Ukf, g)

exists for a dense set off and g, say for all those of the form I-IkfA(xk),
where all of thef, except a finite number are identically unity, the others
being polynomials.

Thus, in a figurative sense, if the "infinite constant" a is desig-
nated Z, then the renormalized matrix elements Z(Uf, g) are finite and
well-defined. If we are concerned only with the comparison of the
matrix elements of U with those of another divergent operator which
can however be renormalized by multiplication by the "same" Z, then
it is clear that we have no difficulty. It is also clear that this depends on
having an especially felicitous situation, and is very far from beginning
to resolve the foundational questions involved.
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Notes to Chapter H1

1. Fermi-Dirac quantization. Why the relations [pj, qj, = igjk?
Originally, Dirac introduced these rules simply by analogy with those
introduced by Heisenberg. In a way it is extraordinary that they were
so successful for although formally similar they have quite a different
physical role from the Heisenberg rules. The latter, to a mathematician
concerned with physics and at a suitable level of sophistication, are a
way of describing the geometry of a single non-relativistic electron.
They assert roughly that its ambient space is three-dimensional
euclidean space, and that the action of the group of translations on this
space is rather fundamental, in a fashion in which Planck's constant
intervenes very materially. The Dirac field quantization rules, on the
other hand, state nothing about the geometry of any single particle,
being entirely independent of special assumptions as to the description
of the particle, except essentially that its states can be represented by
vectors in an infinite-dimensional linear space. They describe rather a
possible mode of independent but structured existence of an indefinite
number of identical particles, without reference to the species of the
particle, in particular independently of whether the particle has a
three-dimensional ambient space, an infinite-dimensional one, or
none at all (the linear vector space representing the states being possibly
of quite a different character from a collection of functions on some
type of manifold). Moreover, the cited rules do not apply to the
familiar material particle, the electron; rather, they were introduced to
deal with photons.

The historical development of the rules for dealing with electrons is
a rather lengthy story, but an algebraist might be led to them by
contemplating the rules

[R(:). R(:')] = -iB(z, z'),

where B(z, z') is a scalar. Necessarily then B(z, z') is skew-symmetric
in : and :', and if the R(:) are to be hermitian, B must have real values;
and for a fully non-trivial theory, B must be non-degenerate. Con-
versely, if B has these properties, a coherent and effective mathematical
theory is possible, as indicated more fully below.

It should be natural for an algebraist to inquire about the replace-
ment of the commutator [R(:), R(:')] by the anti-commutator,
[., .]÷, where [A, B], is defined as AB + BA, yielding the rules

[R(z), R(:')]j S(z, z'),
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where the values of S are scalars. Necessarily then S(z, z') is sym-
1 metric in z and z", and if the R(W are to be hermitian, S must have real

S values. Again, for full non-triviality, S must be non-degenerate. It
then develops that a theory quite different from but as structured as
that involving the commutators can be developed and that, for
essentially familiar quasi-empirical reasons, the resulting algebra is
suitable for describing an indefinite number of electrons (when the
underlying linear space and symmetric form are suitably chosen).

There are some really substantial differences between the anti-
commutation and the commutation rule algebras (the so-called
Fermi-Dirac and Bose-Einstein quantization rules, respectively). The
anti-commutation rules are simpler in the analytical respects with
which we are primarily concerned in that the operators R(z) are
bounded, but are more complicated in some algebraic respects, notably
in the lack of combinations of the field variables R(z) generating a
maximal abelian system, in the most relevant representation. However
most of the truly fundamental features of quantum field theory seem
to be representable either in terms of Bose-Einstein or Fermi-Dirac
fields. For simplicity and brevity, as well as for their general relevance,
these chapters will deal primarily with Bose-Einstein fields, whenever
only one type of field is being considered. The typical situation where
both types are involved, the trilinear (linear-bilinear) interaction
between a Bose-Einstein and a Fermi-Dirac field, which is the most
important single type and includes for example quantum electro-
dynamics, will be discussed later.

There are two possible answers to the natural question as to other
possible modes of quantization, the empirical and the theoretical.
Empirically all elementary particles are perfectly well represented, as
regards their statistics and as far as they can be observed, by one of the
two types described. In view of the limited number of such particles
known and the difficulty of closely examining some of them, this is not
too conclusive. But also theoretically there are results indicating that
no other systems of equal analytical simplicity and coherence exist.
However, there seems to be no clear-cut consensus of opinion on the
extent to which such results are conclusive.

It might indeed conceivably be of mathematical interest to explore
the possible existence of free fields satisfying trilinear or higher order
pseudo-commutation relations and other such desiderata of field
theory. The indications are that no such schemes exist which are
applicable to an arbitrary Hilbert space of single-particle states, but
this does not at all rule out the possible existence of such schemes
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which are Lorentz-invariant and specially adapted to spaces of (spin-
space-valued) functions on conventional space-time.

2. Singular unitary transformations on fields and singular transforma-
tions in Wiener space. The non-existence of a unitary transformation
which induces the pseudo-canonical transformation

qk *cqk, p---c- lpk (c2 # 1) (k = 1,2,
where the canonical variables are in the representation described above,
which is one of the simplest violations of the familiar folk theorem
concerning such transformations, is related to a singular analytical
circumstance which was noted several years before the quantum-
theoretic situation was explored. This is the result of Cameron and
Martin (1947) that the simple transformations x(t) --.* cx(t) (c > 0,
c 0 1) on Wiener space have highly pathological measure-theoretic
properties. It may be said heuristically that if there did exist a unitary
transformation implementing the pseudo-canonical transformation
described, or even only the maps q -, cqk (k = 1, 2,...), then the
transformation described in Wiener space would be absolutely
continuous.

To sketch the connection briefly, the Brownian motion process
x(t), say for 0 5 t < I, may be represented as a Fourier series

xV() - qk q2xkt,
k

where the q, are independently distributed normal random variables of
unit variance. It is evident that the transformations x(t) --* cx(t) and
qk --- cqk correspond. Now if the former transformation were
absolutely continuous, the transformation

fix(. )] -- Flcx(.)] (dwo/dw)(112)

would be unitary (here w represents Wiener measure and w, its trans-
form under the indicated operation). It is not difficult to check that
this unitary operator would transform the operation of multiplication
by qk into that of multiplication by cq. (k = I, 2,. - .). Thus, if the
scale transformation were absolutely continuous, there would exist a
unitary transformation transforming the qk into the cqk. On the other
hand, if the transformation qk -, cqk (k = I, 2,. •.) were implement-
able by a unitary operator, it can be shown that the corresponding
transformation in the infinite product space described above would be
absolutely continuous and so also would be the scale transformation in
Wiener space.
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In general the absolute continuity of a transformation in Wiener

space is readily seen to imply the existence of a unitary operator im-
plementing a corresponding transformation of the canonical variables.
The converse is true as regards transformation of the q,, alone, although
less obvious. Naturally the possibility of transforming the q's in a
stated manner implies in general nothing regarding the possibility of
transforming the p's in a stated manner. The canonical p's do not
arise in connection with the theory of Brownian motion, and while an
extremely simple condition can be given in many cases for the unitary
implementability of a given transformation of the p's and q's, it does
not have an especially simple interpretation in terms of Wiener space.

References to Chapter 11

The only published mathematical proofs, at the present time, of the
non-unitary-implementability of certain apparently canonical trans-
formations of Weyl systems are provided by Segal's general criteria
(1958). What amounts to a proof of the non-unitary-implementability
of some special pseudo-canonical transformations in the Fermi-Dirac
case is implicit in the material near the end of a paper of von Neumann
(1938), which, while directed towards applications to quantum fields,
does not explicitly deal with field variables or their representation.
Particular examples in the same general direction, of a mathematically
partially heur;stic character, were given by Friedrichs (1953), Haag
(1955), and Schweber and Wightman (1955). Rigorous results on the
classification of Weyl systems were announced by Girding and
Wightman (1954), but the proofs have not yet been published. These
authors employ an "occupation number" representation which has a
somewhat obscure physical interpretation and is dependent on the
choice of a basis in the single-particle space.

Our first observation of the existence of inequivalent representations
of the commutation relations (1950) appears to provide one of the
simpleot rigorous demonstrations of the phenomenon in relevant con-
crete terms. Any unitary transformation taking q, --* ckq (k = 1, 2, • •. )
also takes limr, "•k ,akqk into limr ,>k ,,akckqk. From the interpreta-
tion of the canonical variables in the standard representation in terms
of a sequence of identically distributed normal random variables, and
the familiar simple results concerning the sums of independently dis-
tributed random variables, such a limit as lim,, 'k&,bkqk, the bk being
real numbers, will exist on a dense domain if and only if the series
\'kbl is convergent. Obviously, this condition is not invariant under
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the transformation bk -* ckbk, in general. An elaboration of this argu-
ment showed that a number of realistic interaction hamiltonians in
quantum field theory could be transformed into densely defined
operators in a Hilbert space by an adaptation of the indicated trans-
formation, but in continuum inequivalent ways. This apparent lack
of uniqueness gave the result a seemingly negative character, until the
development of the representation-independent formalism described in
Chapters IV and V indicated that the derived physical dynamics might
nevertheless well be essentially unique (cf. Chapter VII).

The foregoing results were communicated orally to van Hove,
among others, who not long afterwards formulated his well-known
paradox (1952), to the effect that the eigenstates of the "free"
hamiltonian

H,= .(akp + bkqk,)
k

are orthogonal to those of the "total" hamiltonian

H = Ho + H,, H, = (CkPk + dqk),
k

for suitable constants ak, bk, Ck, dk (k = 1, 2,.•.). This of course con-
tradicts the standard notion that the eigenstates of either form a
complete orthonormal set. This is necessarily quite a heuristic situa-
tion: what Ho and H, mean as operators, in what Hilbert space they
operate, cannot both really be specified. The paradox has since come
to be thought of as being related to the unitary inequivalence of the
canonical variables Pk, qk, and their linear transforms, obtained by
completion of the square, in terms of which H has the same expression
essentially as Ho. While these may be formulated as rigorous re-
presentations which are indeed inequivalent, relative to the relevant
(free-field) representation for the original p's and q's, the Hilbert spaces
on which both sets of canonical variables act are identical, so that the
orthogonality of the eigenstates would seem to remain somewhat
paradoxical. Actually, in terms of the representation-free formalism,
the situation is quite transparent (cf. Chapter V).



CHAPTER III

Quantization and Relativistic Wave Equations

By "quantization" we mean the passage from a classical mechanical
system to a corresponding quantum-mechanical one. For example, if
the classical phase space is a linear space .0 of finite dimension, with
fundamental non-degenerate skew-symmetric form B(z, z') (z, z' E M),

the corresponding quantized system is that whose algebra of observables
is generated by the canonical variables R(z), where these are operators
in a Hilbert space satisfying the commutation relations

[R(z), R(z')] E- - iB(z, z').

lf.4 is formulated as the set of all 2n-vectors (PI, P2, ' p", q1,q2, 1q.),
and B(z, z') in the form ýk (pk, qk - Pk q,), as is always possible by a
suitable choice of coordinates, and agrees with the conventional
notation in classical mechanics, then the Pk = R(ek) and Qk = MAL
where the ek and fi make up the basis for A' such that the designated
vector equals :k (pke, + qkfk), satisfy the conventional Heisenberg
commutation relations. A similar definition would apply to the case
when .4' is infinite-dimensional, but the existence and uniqueness of
canonical variables of the type described is then not clear a priori.
We intend to take up these questions, but before doing so it is probably
well to indicate the physical motivation for the consideration of this
case, and to explain the origin of the form B(:, z'). We begin therefore
by considering one of the simplest non-trivial examples of a relevant
physical situation, the so-called neutral wclar. or Klein-Gotdon, field.

This field has a particular state of it determined by a solution 0 of
the equation

where 0 is a real-valued function of the real variables xO, x 1 , x 2 , x3, and
El denotes the differential operator - /3xo + 0 2/axI + a2/ax| +
.b

2[ax2. Actually this is only a heuristic statement, for on the one
hand we require a certain boundedness condition on 0 to admit it as a

31
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physically realizable state, and in addition admit generalized functions
as possible derivatives of the O's. Although there is considerable point
in identifying precisely this class of #'s by means of an analysis wholly
within the physical space (with general point (Xo, x1 , x 2, x3)), this
analysis is much longer and more complicated than is required if we
are willing to take advantage of the constant-coefficient character of
the partial differential equation under consideration through the use of
Fourier transforms. Since our main objective is to present a simple
example of an interesting infinite-dimensional phase space rather than
to indicate how to deal with variable-coefficient linear partial differen-
tial equations from the point of view of quantization, it is reasonable
to use this expedient.

We therefore replace the consideration of 0 by the consideration of
what is, roughly, its Fourier transform, the function J defined on the
hyperboloid k .k = mi, where k denotes a vector (ko, k 1, k 2, k3) and
k.k' = koko' - kik! - kak2' - kAk', such that

OX eft- k) ,d3k
S=xo "

where d3k denotes dk dk2dk3 ; the indicated element of measure,
IQ - 'd3k, is simply that induced by conventional Lebesgue measure in
the four-dimensional k-space. The reality of ý requires only that 4 be
complex-valued and satisfy in addition the equation:

where the * denotes the complex conjugate. The precise class .0 of
i's which the theory admits as representative of actual physical fields
is then that of all such measurable 4's which are square-integrable on
the hyperboloid with respect to the indicated measure. .' is then
evidently a real Hilbert space relative to the inner product

which is always real.
To arrive at the fundamental skew-symmetric bilinear form on .4',

it may be noted, rather remarkably, that 4' is in a natural way a
complex Hilbert space. If j denotes the transformation 4(k) -*
ie(k)4(k), where -(k) = ± I according as ko is positive or negative, then
it is easily verified that j is an orthogonal transformation on # such
that j2 = _ !, where I denotes the identity transformation. From this



QUANTIZATION AND RELATIVISTIC WAVE EQUATIONS 33

it can be deduced in a purely algebraic way that # becomes a complex
Hilbert space relative to the inner product <, ), where

J•, k = (4, 0) - ion, h)

together with the definition of multiplication by complex numbers:

(a + ib)4 = a4 + N4•.

[Of course, i4(k) exists as a function, but it is not a member of the class
., and should not be confused with j4(k). The action ofj is on the
members of A as entities, and not upon the functional values of
representatives for the elements of 4'.]

This complex structure, incidentally, is closely connected with the
separation of the field into positive and negative frequency parts, as is
commonly done in the theoretical physical literature. If we now set

(4, = -(A, h,

it is evident that B is a skew-symmetric form on .
The classical phase space .', with fundamental skew form B, is then

ripe for quantization. This depends on the existence and uniqueness
of canonical systems in the infinite-dimensional case for a given
classical linear system (.', B), a matter requiring substantial considera-
tion, because of important differences from the finite-dimensional case.
We leave this quite general question until the next chapter, and con-
tinue the examination of the specific phase space .' determined by
the Klein-Gordon equation.

In principle the equations of a field do not need to admit any
symmetries but it is only when suitable symmetries exist that it is
possible to have conservation laws for energy, momentum, etc., of the
conventional type. The definition of energy, momentum, etc., in the
general case depends upon the existence of a suitable treatment for the
symmetrical case. For this and other reasons the invariance properties
of the present system under the action of the Lorentz group are
important.

A Lorentz transformation T: x Ax + a, induces in an obvious
manner a transformation of the functions # defined on space-time:

O(x) -÷ ,(Ax + a).

It is straightforward to verify that this transformation, say T', com-
mutes with the D'Alembertian El. It thus appears that the space #
is left invariant by the action of the Lorentz group, but to be quite
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precise about it, the action of the group on functions of momentum
should be given a definite formulation. The action

is formally indicated and defines, as is easily seen, an orthogonal
transformation on .0 as a real Hilbert space.

Now up to this point we have not placed any restriction on M2 ,

which could have been negative, so that m is pure imaginary. If we
now restrict consideration to the case when m is real, it can be deduced
that the foregoing orthogonal transformation commutes or anti-
commutes with the transformation j defined above, according as the
Lorentz transformation is time-preserving or time-reversing (see below).
In particular, the proper Lorentz transformations are represented by
unitary transformations on .- ' as a complex Hilbert space. When m
is not real, the transformations are definitely not unitary, a situation
closely related to what is referred to in the theoretical physical literature
as the impossibility of making a covariant separation of a field with
imaginary mass into positive and negative frequency parts.

To examine more closely the character of the foregoing transforma-
tion for the case of the reversal operations of the Lorentz group, it is
useful to recall that there exist two characters x, and Xt of the full
inhomogeneous Lorentz group G, mapping the group onto ± I, and
distinguished by the properties of taking space reversal, but not time
reversal, resp. time reversal but not space reversal, into - I. The
kernel of Xt is a subgroup Go of G of index 2, the so-called ortho-
chronous group. It is readily checked directly that the elements of Go
are represented by unitary tru-nsformations. To see that the remaining
elements of G are represented by "anti-unitary" transformations,
i.e. one-to-one linear transformations of the complex Hilbert space
onto itself such that <4, O> -. (•, 4>, it suffices to note that space-
time-reversal is represented simply by complex conjugation on -',
when represented as above by functions on momentum space. This
comes about in a perfectly natuial way, but people have sometimes
tried to find some unitary transformation that could be made to cor-
respond to time reversal; it can be shown that there is none which will
preserve the important representation property of the transformations
which we have defined.

That is to say, it is rather clear that if U(T) denotes the transformation
on .# that is induced by the Lorentz transformation T 1 (the exponent
- I is required for mathematical convenience), then

U(T)U(T') U(TT'),
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for arbitrary Lorentz transformations T and T'. The map T -- U(T)
may be called a semi-unitary representation of G on .'; it is unitary
actually on the orthochronous Lorentz group. It is in fact the best
known irreducible unitary representation of this group. That it is a
continuous representation, i.e. that (U(T)J, ý) is a continuous function
of T, for any fixed 4 and ý, may be readily verified by standard methods.
It is therefore one of the representations treated in Professor Mackey's
chapters, to which we refer for the (non-trivial) proof of irreducibility.
Once this is established, it is not difficult to go slightly further and
show that the representation is real-irreducible; i.e. not only are there
no non-trivial closed invariant subspaces of -' as a complex Hilbert
space, under the action of the orthochronous group, but the same is
true for .' as a real Hilbert space. From this it may be deduced,
making use of an infinite-dimensional analogue to Schur's lemma, that
the form B given above is the on&y continuous Lorentz-invariant skew-
symmetric form on A', apart from multiplication by a constant. Since
any quantization of AM along the general lines indicated in the last
chapter (more specifically, as a so-called linear Bose-Einstein field),
which is Lorentz-invariant, must involve such a form, this implies the
essential uniqueness of the commutation rules for the Bose-Einstein
quantization of a scalar field.

There is another way of formulating the representation space for the
foregoing representation that is more familiar and has the advantage
that the operation j on which the complex structure is based is re-
presented simply by numerical multiplication by the complex number i.
If we take a function 4 in M, and restrict it to the positive-frequency
part (i.e. k0 > 0) of the mass-hyperboloid k 2 = i

2
, we get a function

•' say satisfying the normalizability condition

f'o>0 2-t 2 dko

and conversely, every complex-valued function 4 that is measurable
and satisfies this condition, arises in this manner from a unique 4'. The
set of all such 4' then forms a complex Hilbert space ." of the con-
ventional sort, the inner product being defined in the obvious manner,
by the equation:

I~kI

These functions 4' are commonly called scalar particle wave functions.
Their use in the present connection makes evident the positivity of the
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energy of the field, a simple but rather fundamental point. The energy
of a system which is defined by equations invariant under translations
in time, is commonly defined in quantum theory as the self-adjoint
generator of the one-parameter group of unitary transformations re-
presenting translations in time, in their action on the wave functions
of the system. There is no difficulty in checking that the energy as
thus defined is represented by the following operator on M': Rk) --
ko0 k). Obviously this operator is non-negative, having in fact a
continuous spectrum consisting of the interval [m, oo).

Let us now consider the foregoing rigorous developments in relation
to the heuristic notion of quantization. In its most elementary form
the latter involves the replacement of the real-valued solution , of the
Klein-Gordon equation by an hermitian operator-valued solution, say
+, of the same equation. Now + will represent a classical mechanical
system, and in fact essentially that represented by 0, unless some of the
commutators [+(x), +(x')] are distinct from zero. The simplest non-
trivial assumption about these commutators is that they are numbers,
so that

[*(x), *(x')] = iD(x, x'),

where D(x, x') is real-valued (by virtue of the hermitian character of
the +(x)), and not identically zero. Now for such relations to be con-
sistent from the viewpoint of Lie algebra it is necessary and sufficient,
in a formal way, that the skew-symmetry and Jacobi conditions be
satisfied. The former simply gives the restriction

D(x, x') = - D(x', x),

while the latter is satisfied automatically, by virtue of the commuta-
tivity of any operator with a number. Thus a formal quantization
may be effected starting from any skew-symmetric function D(x, x').
But if it is required in addition that the commutation rules be
Lorentz-invariant, i.e.

[*(Tx), +(Tx')] = [+(x), *(x')]

for any orthochronous Lorentz transformation T, then D(x, x') must
have the form

D(x, x') = 4(x - x'),

where 4 is a function of a single vector that is invarant under the
orthochronous homogeneous Lorentz group. The uniqueness of the
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invariant bilinear skew-symmetric form on M that is Lorentz-invariant
means essentially the uniqueness of the 4 of this type which is odd.
The 4 used implicitly above is a generalized function (a distribution,
actually, in this particular case) differing by a real constant multiple
from the function of x given by the formula fk'2.. 2 e'zk ie(k) d3k/1kol.

To see this, we must consider how the purely formal quantized field
+(x) is connected with a canonical system of hermitian operators over
the space.,#, relative to the bilinear form B. This is important also to
connect the conventional formalism in theoretical physics with the
present rigorous formulation. Despite the fact that +(x) has no known
empirical physical or mathematical interpretation-in fact Bohr and
Rosenfeld in a classic paper thirty years ago showed rather con-
clusively the former even in the more favorable case of the electro-
magnetic field, while the mathematical investigations of the past thirty
years have uniformly indicated that 4(x) has no effective meaning
(less so even than the dx in the expression dy/dx)-the notation is still
extensively used in theoretical physics. Those using the notation will
often agree that it is only a space-time average J*(x)f(x) d4x, where the
weighting function f is, say, infinitely differentiable and vanishes out-
side a compact set, that has empirical and/or mathematical meaning;
and claim on occasion that as long as one is aware of this, no harm can
result from the use of the +(x). However, it is obviously out of place
in a logical theory, and its continued presence in theoretical work is a
constant temptation to form trilinear products like +(x)+(x)+(x)*,
where qo is another quantized field, which products, however extensive
a role they play in the conventional treatments of quantum field-
interactions, cannot be given empirical or mathematical meaning by
any known process, including averaging with respect to a smooth weight
function in a small region. Therefore we shall use the notion and
notation *(x) only in showing the connection between the conventional
and rigorous approaches.

Let us assume now that we have obtained a mapping R from .0' to
self-adjoint operators in some Hilbert space, such that R is real-linear
(i.e. R(f + g) C- R(f) + R(g) and R(af) C aR(f) if a is real), and the
canonical commutation relations are valid:

R(f), R(g)] = - iB(f. g);

we may as well use the infinitesimal form of the relations involving R,
since to trace the connection with the conventional formulation is
necessarily a heuristic process. Since R is a linear function on the
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space.#', as a real Hilbert space, it is reasonable to write, in a figurative
rather than mathematical sense,

RY) = l __) ~

where + is a function whose values are hermitian operators. This
function 4 is then the conventional quantized field as a function on
momentum space. To obtain the field in physical space, it is only
necessary to take the Fourier transform:

*(x) f .. ,ek'4(k) .

Furthermore, if g is any function on physical space having a continuous
Fourier transform whose restriction to the mass hyperboloid is square-
integrable (e.g., it suffices if g and all its partial derivatives up to third
order, assumed to exist, are integrable over space-time), the figurative
expression J+(x)g(x)d4x may be given a rigorous mathematical in-
terpretation, as R(i), where A* is that element of.# which coincides on
the mass hyperboloid with the inverse Fourier transform of g; the
validity of this interpretation follows at once from the figurative use
of the Parseval formula. Another figurative use of the same formula
yields readily the stated commutation relation between +(x) and +(x').

This discussion, although confined to the case of the Klein-Gordon
equation, applies with little change to the case of any conventional
relativistic particle and especially one of "integral spin," such as the
photon. The quantization of the Maxwell equations may in particular
be effected entirely analogously. We shall describe this and the electron
wave field more because of the importance of these fields, rather than
because any significant new problems arise (except for the change to
Fermi-Dirac statistics in the case of the electron-which amounts,
very roughly, to a change of sign, skew-symmetric forms being re-
placed by symmetric ones, etc.). The commutator function 4 in the
general case of a system defined by a linear hyperbolic partial differen-
tial equation is replaced by a generalized function that is essentially the
Riemann function for the equation. In the variable coefficient case one
must deal with a function D(x, x') of two vectors, which in the case of
a second-order equation may be defined in quasi-heuristic fashion by
the following Cauchy (initial value) problem: for each fixed x', D(x, x')
satisfies the equation as a function of x; [D(x, X')]. 0  = 0; and
[a D(x, x')/PxO]2,..,. = S{x - x'), where x= (x1 , x 2, x3). In addition
to providing the commutator function for the corresponding quantized
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fields, this function can be used to solve the Cauchy problem for the
equation with general initial data in a well-known fashion. In suffi-
ciently simple cases this function can be shown to have rigorous
existence as a distribution, but in general its singularities are too
severe, and the precise global formulations applicable to general
hyperbolic equations are still under development.

A conventional relativistic particle or field is describable by a system
of constant-coefficients hyperbolic equations, which serves to pick out
a subspace of the direct product of the space of all scalar functions on
space time with a finite-dimensional representation space (or so-called
"spin space") of the Lorentz group which is invariant under the group.
Elementarity of the particle or field corresponds to the irreducibility of
the representation of the Lorentz group defined thereby by the equation.
The Maxwell and Dirac equations are the best known of such equations,
and next to the Klein-Gordon equation just treated, are mathematically
the simplest (apart from certain complications resulting' from the
vanishing mass of the photon). The finite-dimensional representations
in question all admit invariant symmetric bilinear forms, which are
necessarily indefinite, since the Lorentz group has no non-trivial
finite-dimensional orthogonal representation. A remarkable and im-
portant feature of the relativistic equations is the existence of a positive
definite symmetric bilinear form on the space of solutions, where
a priori only an indefinite form was to be expected. In fact, the re-
striction of this indefinite form to the "real mass" wave function
subspace, the Lorentz-invariant subspace in which all physically
relevant fields may reasonably be expected to lie, turns out to be
definite.

The Maxwell equations are somewhat atypical, but are of course a
most important special case, and the general non-scalar representation
of the Lorentz group can be treated along lines which are at any rate
not more complicated. They may be described either in terms of
potentials or in terms of field strengths: for the later discussion of
quantum electrodynamics, the potentials must however be used.
Consider then the space of all functions Aj(x) on space-time
(k = 0, 1, 2, 3; x = (x0 , x 1 , x2 , x 3)) whose values are in the real vectoi
representation space of the Lorentz group (which space is isomorphic
to four-dimensional space time except that the translation subgroup of
the Lorentz group acts only trivially). Under the action of the
Lorentz group this space is far from irreducible, splitting as a direct
integral, or continuous direct sum, of subspaces which derive essenti-
ally from an invariant quadratic expression in the generators of the
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Lorentz group, and related expressions, which must act as constants
in an irreducible subspace, the expression of this requirement being the
partial differential equations defining the elementary vector particles.
This approach could be rigorously developed, but for brevity we shall
merely describe the Maxwell equations and the Lorentz-invariant
forms on the space of its solutions, in terms of functions on "momen-
tum space," i.e. the dual to space-time as a linear space.

Consider the class W of all complex-valued measurable functions
A,(k) defined on the cone C: k2 = 0 (k = (ko, k1 , k 2, k 3), k 2 =

k02 - ki - k2 - k2), which satisfy the hermitian condition

A,(-k) = A,(,)*,

and the linear condition

k.A(k) = 0

(here the Lorentz-invariant scalar product is employed), almost every-
where on the cone. (That only functions on C are involved corres-
ponds to the equations • 4t = 0 (i = 1. ?, 3, 4) in physical space,
while the linear condition expresses the side-condition Y-, OAt/lx, = 0.)
From the Cauchy-Schwarz inequality and the side condition it follows
without difficulty that

A(k)., A(k) >-> 0.

The subset Yf of all elements A of W for which

(A, A> = fc A(k). A(k) dk

is finite, where dk refers to the unique Lorentz-invariant element of
volume on C, namely Ik01- I dk~dk2dk3, is thereby well-defined. Set-
ting .AX for the set of elements A of Y" such that (A, A> = 0, .AX is
actually a subspace of 2' and the quotient space f/.A' is a real Hilbert
space .*', the space of "normalizable photon fields," relative to the
inner product for any two elements IT and A" being defined as

4,' ?) = fc A(k) A'(k) dk

where A and A' are any representatives for I' and A' in Y'. The
ambiguity in the choice of A or A' is essentially the so-called "gauge-
invariance of the second kind" in conventional theory.

As in the case of the Klein-Gordon equation, there is an essentially
unique complex structure which may be imposed on the space, namely

j: X-- X', where A;(k) = iE(k)A Ak) (j = 1, 2, 3, 4),
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it being readily verified that j is well-defined modulo .X'. Noting that
J2 = - I, that QAX, j'> = 4•, I', and. that j commutes with the
action of the proper Lorentz group, it then follows, in a familiar
algebraic fashion, that *' is a complex Hilbert space with respect toj
as multiplication by i, and the inner product

(1, T) = <A, A'> + i~jA, A'>.

This has been a Lorentz-invariant construction, so that the action of
the Lorentz group on *' as a complex Hilbert space gives a unitary
representation of the proper inhomogeneous Lorentz group. The
elementarity of the photon corresponds to the essential irreducibility of
this representation; more exactly, it splits into two irreducible sub-
spaces, corresponding to different polarization states, which are inter-
changed by space reversal (i.e. the operation taking x0 -0 x0 and
xr- -x, for r : 0). The only mathematically difficult point here is
the irreducibility, which again is a special case of the irreducibility
established in Professor Mackey's chapters for a general class of
representations of semi-direct products. To summarize:

THE MAXWELL REPRESENTATION: The real normalizable solutions of
the Maxwell equations in vacuum (with Lorentz side condition) form a
complex Hilbert space on which the orthochronous Lorent: group acts in
a continuous irreducible unitary' aushion. Time reversal acts as a con-
jugation. The energy is a non-negative operator of continuous spectrum
(0, cc).

The assertions about time reversal and the energy have not been
explicitly established above, but are simple corollaries. The positivity
of the energy may be seen most readily by using a representation in
which j acts as ordinary numerical multiplications by i, which is in fact
the conventional positive-frequency representation for normalizable
photon wave functions. The map A,(k) BAk) = (112)(A,(k) +
A,( -k)) carries ,'. (the real photon fields) into a collection of complex-
valued functions on the positive-frequency cone C.+, ko > 0 (the
complex, positive-frequency fields), in such a fashion that the inner
product (A, A') corresponds to the conventional type

(B, B') = f" B(k). B(k) dk.

and j corresponds to multiplication by i. That is, we have an ordinary
Hilbert space (more precisely a subspace of such) of all complex-
vector-valued functions on C+, with a corresponding norm. Since the
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energy is represented by multiplication by k0 , the assertions above
follow.

As regards time reversal, i.e. the transformation x0 --* -xo and
x, --. x,, this cannot be represented by a unitary operator, since it takes
the energy into its negative, and a unitary representative for it would
then set up a unitary equivalence between an operator with positive
spectrum and one with negative spectrum. That the operation in-
dicated is in fact a conjugation on the space W*' set up above of real
normalizable photon fields is a matter of straightforward verification.

The Dirac equation, or relativistic wave equation for a so-called
spin 1/2 particle, differs qualitatively from the Maxwell and Klein-
Gordon equations most notably in the following features: it does not
give a (single-valued) representation of the proper Lorentz group, but
rather of its simply connected covering group; the corresponding
energy is not non-negative. These differences are connected with the
circumstance that Fermi-Dirac, rather than Bose-Einstein quantization,
is appropriate for Dirac particles. Partly for brevity and partly be-
cause we are primarily concerned with the analytical rather than
algebraic problems of quantum field theory, which are essentially
statistics-independent, the Dirac equation will be dealt with only in
general terms.

The relevant finite-dimensional representation, the so-called "spin"
representation, is a rather extraordinary one not readily describable in
intuitive terms. To arrive at this representation, let M be a real
linear space of finite even dimension, with a distinguished real non-
degenerate symmetric form (x, y), the associated Clifford algebra may
be defined as the essentially unique one over the complex field generated
by a unit and elements f(x) (x E M, f being a linear map on M)
satisfying the relations

.(x)f(y) + f(Y)f(x) = (x, y).

Adjunction on this algebra is the unique anti-involution leaving fixed
the elements f(x). Thc Clifford algebra is known to be isomorphic to
the algebra of all linear transformations on a linear space N of dimen-
sion 2"', where m is half the dimension of M, and on which there is a
distinguished non-degenerate hermitian form, adjunction relative to
which corresponds to the original opcration in the Clifford algebra.
A spinor is, in the first instance, an element of N, a spinor field being a
function on space-time with values in N.

Now if 0 is any transformation on M leaving invariant the funda-
mental symmetric form, i.e. a "pseudo-orthogonal" transformation,
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the map f(x) -, f(Ox) evidently extends to an automorphism of the
SClifford algebra, and thereby a representation of the pseudo-ortho-

gonal group on M by automorphisms of the Clifford algebra is set up.
On the other hand, since every automorphism of a full matrix algebra
is inner, there corresponds to 0 a linear transformation To on the spin
space which induces the corresponding automorphism of the matrix
algebra. Now To will only be unique within multiplication by a scalar,
but since To may be chosen to be unitary relative to the form on N,
this scalar may be limited to have absolute value unity. Corresponding
to the automorphic representation described, there is then a scalar
C0 0o. such that

ToTo0 = C.0,.T 00 .

A closer examination of the situation shows that with suitable choices
for the T,, the scalars C0 .o,. will always be ± I ; but that there is no
choice for them which will result in a strict representation, with
co., = I. This explains the term "double-valued representation."
By continuity, c. 0,. will be unity if 0 and 0' are sufficiently close to the
identity, so that a local representation is obtained, which extends to the
simply connected covering group of the pseudo-orthogonal group;
this may be seen to cover it twice if M has dimension greater than two.

In the particular case when M is Minkowski space-time and the
fundamental form the usual relativistic one, the pseudo-orthogonal
group is the homogeneous Lorentz group, and there results a re-
presentation of the covering group on a four-dimensional spin space,
on which there is defined a distinguished indefinite non-degenerate
hermitian form. The Dirac equation describes an irreducibly in-
variant subspace of the direct product of this space with the space of
all scalar functions on space time, under the action of the full group,
including reversal operations. Specifically, choosing unit vectors
e, (r = 0, 1, 2, 3) in the x, directions, and setting y, = f(e,), so that
yy, + yy, = 2g,,, with g,, =0 for r A s and go0 = -I, g,, =
I (r > 0), let W' be the collection of all measurable functions #k) on
the "mass hyperboloid": Cm:ki=mn, to the spin space described
above, such that VO + imO = 0, where V = _ yk,, for which

112  f , 0 k),9 0k)dk,

where <., .> refers to the Lorentz-invariant hermitian form on the
spin space and Ak is the Lorentz-invariant element of measure on C,,
is finite (the indicated inner product being necessarily non-negative by
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virtue of the Dirac equation being satisfied). The action of the ortho-
chronous Lorentz group on W is then unitary, continuous, and together
with the anti-unitary action of time reversal, irreducible.

The energy spectrum is readily seen to run from m to o and from
- oc to - m. The apparent problem posed by these negative energies
disappears with the appropriate Fermi-Dirac quantization, which gives
a field with positive energy. On the other hand, if the Dirac particle
is quantized relative to Bose-Einstein statistics, its energy is negative,
which is in a way a deduction of the proper statistics for a Dirac
particle from general physical principles, a result due originally to
Pauli.

Notes to Chapter M

The question of the extent to which the partial differential equations
for a relativistic elementary particle contain some of the theoretical
physics of the particle not already present in its transformation law is
an interesting one. There is no doubt that the representation alone
(more precisely, the unitary equivalence class of the representation)
suffices to determine the energy and momenta operators (as the in-
finitesimal generators of the group action in the representation), and
that the representation is a unique attribute of a standard relativistic
particle. There is also no doubt that there is no immediate prospect
for empirical significance for the values of wave functions of these
particles as functions on space-time, even after suitable averaging over
a space-time region. Further, the quantum numbers, so-called, and
the quantization rules, for a free field of such particles, are determined
by the associated unitary representation of the Lorentz group. The
theoretical formulation of a relativistic elementary free particle species
as an irreducible unitary representation of the Lorentz group seems on
the whole physically justified.

On the other hand, the conventional interactions between such
particles cannot be readily expressed in terms of the corresponding
unitary representations of the Lorentz group, in fact, the notion of a
"local" interaction, such as have been conventionally assumed to be
the only physical type, depends explicitly on the formulation of the
vectors in the representation space as functions on space-time. The
interaction is, however, not really a property of the free particles, and
there is, moreover, no mathematically rigorous way at present to set up
a relativistic interaction of the type described.

In any event, "free physical particle" is more of an analytical than a
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real concept, and it is helpful to have a clean-cut theoretical definition
for the notion. At the same time, it needs to be borne in mind that
such objects are really adjuncts to more complex structures, arising in
all probability as the "quanta" of non-linear fields. The special
feature of the quanta of the conventional fields is that a complete set of
quantum numbers, i.e. generators of a maximal abelian algebra of
observables on the single-particle space .*, can be defined which are all
of group-theoretic origin.

References to Chapter III

While the connection of the standard relativistic equations with
irreducible unitary representations of the Lorentz group has been
known for more than two decades, there appears to be no detailed
exposition of this material in book form from the group representation
point of view. Following the realization of the role of group repre-
sentation theory in atomic physics, and especially the success of the
Dirac equation, a number of scientists, among them Dirac and von
Neumann, appear to have become aware of the significance for re-
lativistic quantum theory of the theory of unitary representations of the
Lorentz group. Such representations were necessarily infinite-
dimensional, in contrast to the familiar finite-dimensional non-
unitary representations. A large number of representations of possible
physical interest were formulated in the late 20s and early 30s, and a
systematic determination of all unitary representations was undertaken
by Wigner (1939), whose work was on a notably higher level of rigor
than the bulk of the theoretical literature. The theory of Mackey was
applicable to so-called semi-direct products of fairly general categories
of groups, and covered in particular the Lorentz group, which is the
semi-direct product of the homogeneous Lorentz group and the group
of all translations in space-time. The results in particular substantially
subsumed those of Wigner and at the same time provided a mathemati-
cally unexceptionable basis for them.



CHAPTER IV

General Structure of Bose-Einstein Fields

In the last chapter we went into some detail about the structure of
the classical phase space associated with a neutral scalar relativistic
particle, as well as about relativistic particles somewhat more generally.
The quantization of the neutral scalar field was briefly indicated, but
not at all completed, fundamental questions concerning existence and
uniqueness of systems of canonical operators having been left un-
settled. These questions have actually nothing at all to do with the
specific character of the field being quantized, being identical for
scalar mesons, photons, or fields defined on completely different spaces
from conventional space-time and not necessarily defined by a partial
differential equation. What matters mainly is that we are given a
linear vector space .. ', which may be thought of as the space of all
classical fields of a certain variety, together with a distinguished
skew-symmetric form, or some similar elements of structure, over .4'.
The present chapter aims to treat the quantization problem from this
quite general point of view, the generality being useful not only in
enabling one to treat a greater variety of fields, but also in clarifying the
logical situation and in facilitating a compact mathematical treatment.

Let then .# be a given real-linear vector space, and B a given non-
degenerate real skew-symmetric form on .#. By "non-degenerate" is
meant that the only vector z such that B(z, z') = 0 for all z' in .4 is
z := 0. The reader anxious to keep his feet firmly on the ground may
think of .4 as the space of all real normalizable scalar meson wave
functions of a given mass and of B as the bilinear form given by the
integral expression whose kernel is the usual commutator function. A
Bose-Einstein canonical system, or for short and because of mathe-
matical aspects, a Weyl system, over (.#, B) is defined (as a purely
mathematical object) as a map z -, U(z) of.#4' into the unitary operators
on a complex Hilbert space .', which is continuous in the weak
operator topology as a function of z, when z is restricted to (each and
every) finite-dimensional subspace of .#', and which satisfies the
"Weyl relations":

46
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U(z)U(z') = e(l 2)B'")U(z + Z').
For any such system, it is immediate that [UQtz); - oo < t < oo] is a
continuous one-parameter unitary group, and so has a self-adjoint
generator R(z). These are the so-called field variables, i.e. the reader
may think, if he wishes, of R(z) as the average of the quantized scalar
meson field with respect to a suitable weighting function (any whose
Fourier transform agrees on the mass hyperboloid with that of z, to be
specific).

It is natural a priori as well as relevant in the light of later develop-
ments to consider the existence, uniqueness, and transformation pro-
perties of Bos"-Einstein canonical systems. The finite-dimensional
case has already been treated somewhat; it is the infinite-dimensional
case with which this chapter is primarily concerned.

To begin with the existence question, consider the situation for a
finite-dimensional subspace .+* of .# with the property that the restric-
tion of B to X is non-degenerate. We know then that there exists a
canonical system R.,-(z), defined for all z in .41, and satisfying the Weyl
relations. The set of all bounded functions of the R.*Iz) forms a certain
C*-algebra which may be designated Qý4-. Now if X' is any finite-
dimensional subspace containing .fV, and on which B is likewise non-
degenerate, the restriction of the canonical system Rj-.(z) defined for
all z in .4" to the : in .4' will have the same general properties as the
R.,-(z). From the Stone-von Neumann uniqueness theorem it can be
inferred that there must then exist an algebraic isomorphism from
.•/, into .c1•. which essentially carries R.,-(I) into R...(z), "essentially"
referring to the circumstance that the R(:) are unbounded, and so not
really in the .V's, what is really meant being that f(R.4(:)) is carried
into f(R.4..(z)) for, say, all bounded continuous functions f.

Now it is not difficult to show that every vector : in-# is contained
in some subspace Xt on which B is non-degenerate and that, moreover,
the collection of all such subspaces is directed: if X and .A" are such,
then there exists another such subspace *'" which contains both X4
and X'". Furthermore the isomorphism mentioned above of Vx into
./.+., for the case .X c .4" is unique as a consequence of the fact that
an automorphism of any .cl., which leaves fixed (essentially) the
R.Oz) must be the identity, as follows in turn from the existence of an
irreducible representation for .c/.,. It results that, all in all, what we
have is something like an ascending chain of subalgebras. More
specifically, there is an isomorphism, say k.-x., of .0Wr into s.W., when
.X c .,41'; if in addition, .X c .X%, then
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That is to say, the various injections of the ilr into the dx,- match
together.

This means that it is straightforward to form an algebraic "direct
limit" do of the directed system of algebras-cum-injection-isomorph-
isms [d.x, Ox.-]; there is an injection of each dx into d 0 , these
various injections match together with the -xx, in the obvious manner,
and do is the set-theoretic union of the images of the Or under the
injections. It is clear from its construction that .o is an algebra with
an involution ", the adjunction operation. Each element A of ao has
a norm, its bound as an element of some dsx (which is independent of
.A', providing only that A is actually an element of dx), and these
norms have the characteristic properties of the operator bound:
IIAA*ll = lIAlD 11A11, etc. d0 will not be complete, but it may be
completed with respect to the norm, yielding an algebra d, and when
this is done the properties of the norm are retained. It then follows
from the Gelfand-Neumark abstract characterization of C*-algebras
(or alternatively by a direct argument about limits of concrete C*-
algebras) that V is a C*-algebra. That is, there exists a Hilbert
space V' (not necessarily, and in fact very far from being, unique)
such that the elements of 0 are isomorphically represented, with
regard to algebraic operations and the norm, as bounded operators
on .•.

Thus we obtain a map z -, U(Z) of # into the unitary operators on
Jf%, satisfying the Weyl relations. However, there can be no a priori
certainty of the validity of the continuity requirement for a Weyl
system. While this might appear to be a minor matter, the fact is that
the continuity will definitely not hold for every representation space
-Y', even when it holds for some .)V; and in any event it is not clear
whether a .f always exists for which the continuity is satisfied.
This question is equivalent to that of the existence of a regular state
of d, i.e. one whose restriction to each Q.d, is regular in the sense
previously indicated; all that the general theory guarantees is the
existence of some state, quite possibly devoid of any regularity proper-
ties.

This is a more substantial m,'ter than appears at first glance.
Some further assumption on the system (.W, B) is apparently needed
for the existence of a Weyl system. The assumption of the existence
of a positive definite real symmetric form on .4f, relative to which B is
continuous, is one that is obviously satisfied in the concrete cases that
are at all likely to come up, and is rather weak in a theoretical way.
This relatively general case is however reducible, as regards the
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existence question, to the special case in which A' admits the structure
of a unitary (or not necessarily complete complex Hilbert) space, in
such a fashion that B is given as the imaginary part of the inner
product. For brevity, and because this is an extremely important
special case for applications (in many of which there is a distinguished
complex Hilbert space structure that is physically significant), we
discuss only this case, and state specifically

EXISTENCE THEOREM. For any complex Hilbert space j.', there exists
a Weyl system over(.*, B), where B(z, z') = Im <z, z'>, <z, z'> denoting
the inner product in r.

Of course, the restriction of a Weyl system to a submanifold is again
a Weyl system, so that the case of an incomplete unitary space follows
automatically from the complete case covered by the theorem as stated.
Any proof depends upon the implicit or explicit construction of a re-
gular state for the algebra previously described, and will establish
rather more than the theorem. In fact, one might as well set up
the free-field representation at the same time that the theorem is
proved. This representation will be discussed at length in a latcr
chapter, and it should suffice here to indicate briefly how it may be ob-
tained.

For a finite-dimensional subspace .A' of •W', there is a unique pure
state of V-/..- that is regular in the sense indicated earlier and invariant
under all unitary transformations of .XF onto itself (or rather,
under the automorphisms of .•/.,- induced by these unitary transforma-
tions). The uniqueness of this state E.,- means that the various E.,-
match together; if ..4" is any other finite-dimensional complex-linear
submanifold of. #, and if _ ` is another such manifold containing both
.X' and .X/', then the restriction of E-.. to .c/,. (or to ./.-) necessarily
agrees with E.l. (or E.,.), by virtue of the stated group-theoretic
characterization of these states. In this way a unique positive linear
functional E0 on ..Io is obtained which essentially extends all the E..-
and extends easily to a state E of .Vl, which is obviously regular by
construction. The representation of -a associated with E, by virtue
of the general mutual correspondence between states and representa-
tions of C*-algebras, will then give a Weyl system. It may be noted in
passing that without a positive definite symmetric form on.A (provided
in this case by the real part of the inner product), no unique way of
picking out states E.., i.e. of forming a coherent family of such states, is
apparent.

Now let us turn to the uniqueness question. As indicated in the
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second chapter, uniqueness can not be expected in the conventional
form. If multiplicity is suppressed by requiring irreducibility, this will
not help; the examples given in the second chapter can be shown to be
irreducible, about as closely connected as representations are likely to
be, and yet are unitarily inequivalent. The solution to this difficulty is
however conceptually so simple that, looking backwards, it seems that
it should in essence have been discoverable at the outset of work on the
problem, although there is no doubt that the felicitous development of
the theory of C*-algebras has made these matters seem very much
simpler than they did at that time. The intuitive idea behind it is that
the basic conceptually physically measurable quantities are the canoni-
cal field variables themselves; that in addition to these the smooth
bounded functions of finite sets of them should be measurable (but not
necessarily such functions of infinite sets); and that if a sequence of
bounded observables converges uniformly, then the limit is an ad-
missible observable, since its expectation value in any state can be
determined to within an arbitrary degree of accuracy through the
measurement of the approximating observables. Thus, more specific-
ally, we first take all bounded functions offinite sets of field variables as
the primary observables; and then, essentially as a matter of mathe-
matical convenience, admit also the secondary observables obtainable
as limits of uniformly convergent sequences of primary observables.
This is a priori a physically natural procedure, on a mathematically
naive level: and it is reassuring that its technical implementation, while
somewhat sophisticated, does indeed turn out to circumvent and
illuminate the cited uniqueness difficulties.

The procedure sketched is similar to that initially investigated in
connection with the existence question. As noted, its relative mathe-
matical effectiveness is due to the availability of the theory of C*-
(i.e., uniformly closed, self-adjoint) algebras. While the difference
between such an algebra and a ring of operators in the sense of Murray
and von Neumann is in the beginning merely a matter of topology,
there are great differences in their qualitative mathematical properties,
which underly the relevance of the first as against the second in the
present situation. The crucial difference is roughly that weak approxi-
mation of operators, in contrast to uniform approximation, has no
direct physical significance for the corresponding observables-weak
approximation depends in fact on the particular representation of the
canonical variables, and moreover is affected by enlargement of
the physical system under consideration, while uniform approxi-
mation is both independent of the particular representation of the
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canonical variables, and unaffected by enlargement of the physical
system.

To proceed in a rigorous manner, we define a field observable, re.
lative to a given Weyl system, as a bounded function of any finite set
of canonical variables or as a limit of a uniformly convergent sequence
of such. The collection of all such operators may be called the algebra
of field observables, relative to the system. We can now state

UNIQUENESS THEOREM. For any two Weyl systems R and R' over a
classical linear phase space (f, B), there exists a unique algebraic
isomorphism between the corresponding algebras offield observables that
essentially carries R(:) into R'(:), for all elements z of M.

We shall not go into the proof which, while not long, is perhaps
slightly sophisticated. What this result means is that there is a unique
abstract C*-algebra of field observables, say .V, associated with a given
classical linear system (-#, B) (provided there exists any Weyl system at
all over (-#, B)); this may be called THE algebra of field observables, or
for short THE Weyl algebra, over (A', B). (A pure mathematician
naturally asks whether a direct purely algebraic characterization of the
Weyl algebra can be given, which materially avoids the use of concrete
representations in Hilbert space; the answer is presently not clear,
except that there are significant difficulties in the way of a purely
algebraic, essentially different, characterization.) For the treatment of
time reversal and other operations usually represented by anti-unitary
transformations, it is useful to have a variation of the uniqueness
theorem: if R and R' are as above except that R' is associated with the
commutator form - B, then the same result holds except that in place
of a straight algebraic isomorphism there is a conjugate-linear ring
isomorphism.

It is interesting to note that the situation here is rather simpler in a
way than the corresponding one in classical mechanics. If the form B
is degenerate, substantially nothing can be said about uniqueness as is
easily seen by examples. Now the more degenerate B is, the more
classical is the system, the vanishing of B corresponding to a fully
classical system. Thus the fully quantum-mechanical system is the one
admitting the simplest relevant mathematical result.

To recapitulate, we have arrived at a unique way of "quantizing" a
given classical linear field, which is satisfactory from a general pheno-
menological point of view. It remains now to examine the kine-
matical, statistical, and dynamical implications of this mode of
quantization.
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Taking first the kinematical situation, it is a formal common-
place in quantum field theory treatments that any unitary transforma-
tion on the classical (or "single-particle") space .' (taking for the
moment the case when 4' is a Hilbert space) induces a corresponding
transformation on the field state vector space. This is frequently
established in the crucial cases, such as translation in space-time, by
actually writing down the rather ponderous, figurative expressions,
unfortunately devoid of mathematical meaning or apparent prospect of
such, obtained by substitution of the quantized for the classical field in
classical expressions for the energy-momentum, etc. Actually the
transformation of the field induced by a classical motion can be treated
in a simple rigorous fashion through the use of the foregoing uniqueness
result.

Let Tbe an invertible linear transformation on,& which preserves the
form B (a so-called "symplectic" transformation) and let f be an
arbitrary linear functional on .4. If R is any Weyl system over
(4', B), then defining R' by the equation

R'(-) = R(Tz) + f(z)i (z e.4&),

it is clear that R' is also a Weyl system (here I denotes the identity
operator). Using the briefer term "motion" for what we previously
called a "physical automorphism," it follows now from the uniqueness
theorem that

COROLLARY ON MOTIONS OF THE WEYL ALGEBRA. For any symplectic
transformation T on the classical phase space .4 (relative to the non-
degenerate skew form B on. ') and linear functionalf, there exists a unique
motion of the Weyl algebra that essentially carries R(z) into R(Tz) +
f(z)l, for all z in M.

In this formulation, R refers to a perfectly arbitrary canonical system
over .'; i.e. since we are dealing with the abstract algebra of field
observables, the stated result holds for each and every concrete
canonical system R over (.', B).

What this result means is that, although there will in general be no
operator I(T) acting on the state vectors (in a particular representation)
that corresponds to, say, a symplectic transformation Ton the classical
space M, nevertheless the figurative expression

r(T)xr(T)-I

will have a rigorous interpretation for every field observable X. Thus
one has a well-defined motion of the observables, despite the lack of
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any but a figurative motion of the state vectors. It should be noted
that the motion of the states, as opposed to state vectors, is well-defined
also; the states merely transform contragrediently to the observables.

For the primary kinematical desideratum of relativistic field theory,
that of showing that the Lorentz group acts as a group of motions of
the field observables, the foregoing corollary to the uniqueness is
rather more than adequate. It applies equally well to transformations
unrelated to the action of the Lorentz group, as well as to physical
models based on entirely different models of space-time and corres-
ponding symmetry groups from the conventional Minkowski space-
Lorentz group geometry. Any such kinematical transformation S will
act as a homogeneous symplectic transformation on M and if y(S) is
the automorphism corresponding to S- I in the fashion indicated
above, then y(SS') = y(S)y(S'), i.e. the fundamental classical sym-
metry group acts as a group of motions on the field observables. One
has, so to speak, a rigorous "automorphic" representation of the
Lorentz group, on a well-defined algebra of observables, in place of a
formally unitary representation on a rather vague Hilbert space of
state vectors, in the case of the standard relativistic theories. (To
avoid possible confusion, it may be useful to note here, although
logically it is relevant later, that there will be representations in which
the kinematical action of the Lorentz group will be unitary, for all the
conventional linear fields; but these are not representations in which the
temporal development for an interacting field of particles whose free
behavior are described by the given linear fields can be unitary, or
vice versa.)

While the statistics appear at first glance to be an entirely different
matter from the kinematics, it may be partially subsumed under the
general kinematics as formulated above, by taking the symplectic
transformation T not as a Lorentz transformation (or more precisely,
the action of such on .#), but as a type of "phase" transformation.
The "occupation numbers" and particle interpretation are however
definable only relative to a particular state of the system, the state of
physical relevance being the so-called "physical vacuum" state. It
therefore seems appropriate to postpone the treatment of statistics
until after the consideration of the general role of the physical vacuum
in the next chapter.

The dynamics of a Bose-Einstein field is a generally far less clear-cut
question than any of those treated above. There are, however, a few
simple and conservative statements that may be made about the
qualitative character of the dynamics.
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In the non-relativistic case, the temporal development of the field
will be given as a one-parameter family of motions of the algebra of
field observables. For the crucial case of a temporally homogeneous,
or mechanically conservative, system, this family will in fact be a
group. This group of motions is quite distinct from the groups of
motions arising from the physical kinematics. The mode of establish-
ment of this group in the special cases that have been of interest in
quantum field theory is a separate type of question from that of the
basic theory of the Weyl algebra. It will suffice here to remark that
certain simple but typically divergent such motions can be rigorously
formulated as one-parameter groups of inhomogeneous symplectic
motions of a Weyl algebra.

In the relativistic case, the entire Lorentz group will act on the field
observables by motions; this dynamical representation of the group
must of course be distinguished from the kinematical representation
described above. The kinematical (automorphic) representation, say
a -* Od(a), where a is an arbitrary element of the Lorentz group and
0o(a) is the corresponding kinematical motion of the algebra of field
observables, is comparatively extremely accessible, and is describable in
fairly explicit and entirely convergent analytical form. The dynamical
representation, on the other hand, say a -* O(a), is not at all determined
by (.4, B), but by the interaction; no non-trivial relativistic dynamical
motion has yet been explicitly formulated in a fully satisfactory way.
We shall have more to say about this later, but even in a general way
a non-trivial restriction may readily be formulated for the dynamical
representation.

This is the so-called "covariance" condition. From a conventional
theoretical physical point of view this may be stated most succinctly,
perhaps, as the condition that the Lagrangian should be an absolute
invariant under the action of the Lorentz group. The Lagrangian,
however, is just the sort of object that it seems desirable to avoid in a
treatment aiming at mathematical rigor or clarity and empirical rel-
evance or conceptual physical meaning. It is useful, therefore, to
formulate the covariance in terms of the dynamical representation,
which is mathematically a familiar kind of object and is close to what
is measured, as quantum-theoretic concepts go. The condition is, in
fact, quite simple in these terms:

0(aba- 1) = Oo(a)O(b)Oo(a)-',

for arbitrary Lorentz transformations a and b. The limiting case of
this when b is a displacement through an arbitrarily long time can be



GENERAL STRUCTURE OF BOSE-EINSTEIN FIELDS 55

checked relatively directly, in a number of cases, amounting to the
independence of transition probabilities from the Lorentz frame. More
specifically, when such limits exist, the condition is equivalent to
independence of the so-called forward and backward wave auto-
morphisms -w- and w, from the Lorentz frame, from which follows
the absolute Lorentz invariance of the scattering automorphism q,

where
•,=lira 8(-t')8o(0')

a' w + Wo_

(t' denoting the Lorentz transformation consisting of translation
through the time t); but the condition is quite independent of the
possible existence of such limits.

Relative to a given dynamical representation a -- 0(a), the physical
vacuum is definable as a regular state that is invariant under all of the
O(a) and for which the induced energy spectrum is non-negative. It is
difficult not only to formulate the relevant dynamical representations,
but also to establish the existence and/or uniqueness of the correspond-
ing physical vacuums. Before discussing such matters further, the
more approachable and equally inevitable matters of the general role
of the physical vacuum and the structure of the free field will be
explored.

Notes to Chapter IV

I. Pathological canonical systems. It is easy to give examples of
self-adjoint operators P and Q having a common dense domain which
they leave invariant, and whose commutator PQ - QP agrees on this
domain with il, but which nevertheless do not satisfy the Weyl relations.
For example, let .*" be the Hilbert space of all square-integrable func-
tions on (0, I), and let Y be the domain of all C® functions vanishing
near the endpoints. Let Q denote the (bounded) operatorf(x) -0 xf(x)
on .)r, while P is to denote any self-adjoint extension of the operation
which maps Y as follows: f(x) - if' (x).

On the other hand, one may readily set up one-parameter unitary
groups U(s) and V(t) on a Hilbert space which satisfy the Weyl rela-
tions, but not the associated continuity conditions, so that the Heisen-
berg relation is inapplicable. E.g., let .0' denote the Hilbert space of
mean-periodic functions of order 2 on the real line, and let U(s) and
V(t) act as follows:

U(s),f(x) i.f(x+s); V(t),f(x) -- eunf(x).
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2. Weak vs. uniform topology, and non-observable operators. Readers
who have not had much occasion to become familiar with the weak and
uniform operator topologies and their relations to algebras and to such
results as the Stone-von Neumann uniqueness theorem for the
Schr6dinger operators, may find the technical situation somewhat
elusive in a general way, in the present chapter. There is no real
substitute for the cited mathematical background, but a few special
explanatory notes may be useful.

The definition above of the Weyl algebra depends on the weak
topology in the formulation of the .014, for ,' finite-dimensional, a
feature which at first glance might seem out of place in a construction
which emphasizes the uniform topology. The point is that for finite-
dimensional .4' there is no essential difference between the result
obtained with the two topologies, for reasons given in the first chapter.
A construction might have been employed which was based entirely
on the uniform topology, and an algebra obtained for which results
similar to those described above for the Weyl algebra, would be valid.
However, the circumstance that the Weyl algebra includes all bounded
functions of finite sets of canonical variables that could be even re-
motely relevant makes it more convenient. It ought perhaps to be
noted again that the " field observables," such as canonical variables,
while conceptually observable, are not the objects really measured
empirically, whose theoretical counterparts are more complex, being
associated with automorphisms of the algebra of field observables (or
more precisely, the unitary operators representing these automorphisms
in the representation determined by the physical vacuum state, as
treated in the next chapter). These unitary operators, which give the
real physical temporal development, would be the same whether the
present Weyl algebra is used or any of various technical variants, some
of which can be formulated entirely without the use of the weak
topology.

Naively, one might also well ask whether the Weyl algebra is actually
materially smaller than the algebra of all bounded operators, in, say,
the "free-field" representation (which will be treated in detail in
Chapter 6). This can be shown to be the case in several ways; in
particular it can be shown that no non-trivial bounded function of the
"total number of particles" (see below) is in the Weyl algebra. This
has the simple if quite rough and somewhat oversimplified interpreta-
tion that the total number of "bare" particles is devoid of physical
meaning.



GENERAL STRUCTURE OF BOSE-EINSTEIN FIELDS 57

iefe'eumceu to Chapter IV

See Segal's paper (I 959b) for a more" detailed account of the basic
material of this chapter, and Shale (1962) for a study of the auto-
morphisms induced by various classes of symplectic transformations
and their unitary implementability, etc.



CHAPTER V

The Clothed Linear Field

In the last chapter we treated the geaeral phenomenology, kine-
matics, and dynamics of a Bose-Einstein field. Associated with any
linear space .# (representing all classical fields of a particular species)
with a distinguished suitable bilinear form B (which is determined by
the partial differential equation defining.#', in practice, and is physically
analogous to the so-called fundamental bilinear covariant in classical
mechanics, as well as related to the quantum-mechanical commutator),
there was a unique algebra ./ of "field observables," consisting of all
bounded functions of finite sets of the field variables R(z), together
with their limits in the sense of uniform convergence, satisfying the
associated Weyl relations (i.e. field commutation relations in bounded
covariant form). Any group of linear transformations on ,' leaving
invariant B is then canonically represented by a group of automorph-
isms of .c/, which gives the kinematics. The dynamics will, in nontrivial
covariant cases, be given by a different group of automorphisms of %r,
which must be given separately.

This is fine as far as it goes, but to make contact with empirical
physics it is necessary to deal further with the determination of transi-
tion probabilities, the possible values of the energy and preferably to
give a particle interpretation for the states of the quantum field, many
experimental physicists considering the particles, rather than the field,
to be fundamental. This may seem like a complicated task, but in
essence it reduces to the treatment of the so-called physical vacuum.
There are various ways of giving a theoretical definition for the
vacuum, which is a certain distinguished state of d, e.g. the presumably
(or, at least, hopefully) "positive-energy," "regular" state invariant
under (dynamical) translations in space-time, in the case of a Lorentz-
invariant system; or, the state of lowest energy, in the conventional
treatments (unfortunately, this is from a literal viewpoint mere rhetoric
since in the interesting cases the energy is given by a formula which is
mathematically meaningless); etc. In many ways, however, the concept
of physical vacuum seems even more fundamental than that of field

58
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energy and it may very well be more sensible to take it as a primitive
notion and deal with the energy, etc., in terms of it, rather than vice
versa. In the interests of mathematical as well as physical conservatism,
we shall proceed along these lines.

It is appropriate to begin with those properties of the vacuum which
result simply from its being a state. Having considered these, the
relation between the vacuum and a given temporal development for the
field will be considered. More general transformation and statistical
aspects of the physical vacuum will then be taken up. Finally, some
examples of vacuum states and associated structures are developed,
including a familiar so-called "divergent" field, whose treatment along
the present lines is straightforward and rigorous.

Now let .V/ be the Weyl algebra over the unitary space Mi, and let E
be a given physical vacuum state for .,/. Then as noted in the first
chapter, there is an associated representation for .r/, simply by virtue of
its being a CO-algebra. To sketch briefly how this arises, we forget for
the moment about ,', and form a new unitary space, consisting essenti-
ally of ./ itself, with the inner product

,A, Bý = E(B*A);

all of the usual requirements on a unitary space are easily seen to be
verified, except that 'A, A', may vanish without A necessarily vanish-
ing. If elements B and B' of .c/ which differ by such a null vector
A, B' = B + A, are identified, a unitary space in the strict sense is
obtained. This space, say ._f o, is not necessarily complete but can be
completed to a Hilbert space .. '. There is an obvious "natural" map
from .Va onto .jr0, say A ,-i7(A) (,7(A) being the set of all elements of -V
equivalent to A). A representation of ./ is now obtained by making A
correspond to the operator #o(A) on .%o defined as follows:

•o(A): 7(B) - - 7(AB).

It can be verified that #o(A) is in fact well-defined thereby, and that
moreover 4o has the usual properties of a representation:

40(A + B) = #o(A) + O0(B), 4o(aA) = a~o(A) (a a complex number),

O(AB) = O0(A)00(B), Oo(A*) =

Furthermore, it can be shown that O0(A) is a bounded operator on .'o,
and so extends uniquely to a bounded operator on .*, which may be
designated O(A); 0 is then a representation of ./ on a Hilbert space -V'.

In addition to the representation 0, and the linear map on ,f, there
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is an important distinguished vector v in JY, namely 71(I). v has the
property that

E(A) = (O(A)v, v),

so that in the representation obtained (although generally not in an
arbitrary representation), Ecan be represented by a normalizable vector
in more-or-less the conventional quantum-mechanical manner.
Furthermore, v is a "cyclic" vector for 4 (which means, as a matter of
definition, that the #A)v span .Y). These properties can be shown to
be characteristic. That is to say, given a representation 4' of sif on a
Hilbert space .1V with a cyclic vector v' such that

E(A) = (0'(A)v, v),

the structure (.1", 0', v') is unitarily equivalent to the one constructed
above. It is also worth noting, for background purposes, that the
representation 0 can be shown to be irreducible if and only if the state
E is pure.

Now returning to the specific case in which ./ is the Weyl algebra
over .', being generated by the unitary operators W(:) satisfying the
Weyl relations

W(-)W(z') = exp ((i/2) Im (z, z'))W(z + z'),

the unitary operators W'(-) = O(W(z)) will also satisfy the Weyl
relations, and so define a Weyl system over Jr if and only if the con-
tinuity requirement is satisfied. This requirement, that { W'(tz);
- cc < t< oc} be for any z a weakly continuous function of t at

t = 0, is however not automatically satisfied, and examples can be
given to show that even in the case of a finite-dimensional Hilbert
space, it may well be violated.

However, it turns out, quite conveniently from a technical stand-
point, that reasonable physical desiderata on the state E, as the vacuum
state of a physical system, are almost equivalent and in any event
imply this continuity condition. In the first place, the stated con-
tinuity implies the continuity as a function of t, near t =0 of
exp [itR(z)], R(:) being the corresponding self-adjoint field variable.
Now e"t1R) depends on the "field" R(z) and the parameter t in an
almost maximally smooth and bounded way and it seems reasonable
that its vacuum expectation value should have some corresponding
such dependence. The stated condition seems maximally weak among
simply formulable non-trivial such conditions. Thus, if E is an honest
physical vacuum, the representation determined by it may quite
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reasonably be expected to determine a concrete Weyl system W' as the
image under 4 of the abstract system W.

To approach the continuity condition from another direction, if .'
is a finite-dimensional subspace of Jr, then .Pl., is a system of a finite
number of degrees of freedom of the sort considered in Chapter 1.
The state E, when restricted to V., is a certain state E.# of this finite
system. Now as indicated in Chapter 1, there is good reason in an
exact theory to require that any such state admit a certain elementary
regularity property. Specifically, Ew should have the form

E.#(A) = tr (AD.&),
D.v being an operator of absolutely convergent trace (relative to the
ring .1.v,, i.e. in a representation for -a.# as the ring of all bounded
operators on a Hilbert space). But if E.# has this form, then
E(W(t:)) = tr (W(tz)D.,), taking .4V as the one-dimensional subspace
spanned by Z, for some operator D., of absolutely convergent trace,
and the continuity as a function of t follows.

In such a fashion one may be led to make the
DEFINITION. A regular state E of a Weyl algebra .-/ over a space

(.V", B) is one whose restriction E.# to the subalgebra .V/., relative to
any finite-dimensional subspace on which B is non-degenerate has the
form

E.#(A) = tr (ADA),

for some operator D,# of absolutely convergent trace relative to Sig.
This is mathematically a rather weak regularity condition, and it is

surely reasonable from a physical viewpoint to expect a physical
vacuum state to be regular in this sense. In a theoretical way the
definition of regularity is somewhat further validated by its mathe-
matical development. It will suffice for our purposes to cite the follow-
ing results.

THEOREM. A state E oj a Weyl algebra .,W over a space (.', B) is
regular if and only if there is a concrete Weyl system W over (.*, B) and
a vector r in the representation space .f* for W, such that

E(A) = ((A)fr, r),
where O(A) is the concrete operator on .X corresponding to the element
A of the abstract Weyl algebra ./.

Alternatively, the state E is regular if and only if its generating
functional I.A(:) = E(W(:)) is continuous relative to every finite-dimen-
sional subspace of'.•, and if in addition E is the "natural" state whose
generating functional is IL(z).
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More specifically, let a functional ju on Jr be called quasi-positive-
definite in case it has the continuity feature just described, and if in
addition, for arbitrary complex numbers fy and vectors zj in Jr
(j = 1,2,. n),

-I(Z, - Zk)e>".Z)fJ~k ý 0.
I.k

It is easily seen that the generating functional of a regular state must
be quasi-positive-definite. Conversely, any such function determines
in a "natural" way a regular state E of which it is the generating
functional.

There is a mutual correspondence between regular states of the
Weyl algebra and Weyl systems and there are a variety of reasons for
postulating that the physical vacuum is regular. But regularity is only
a mild smoothness condition on the vacuum and we have yet to
examine the determining features of the vacuum. To this end we
again forget about the space Jr and deal with .41 as an abstract C-
algebra. A vacuum is, as a mathematical and physical object, defined
relative to a particular motion of do, which is given in non-relativistic
form by a one-parameter group 4, of automorphisms of 41. The
conventional formulation of the vacuum as "the state of lowest
energy" is not effective as long as the energy of a state is not defined,
and in fact ."state" as used in this conventional formulation is not
really the same as "state" as used here, but corresponds rather more to
our notion "state vector," i.e. is a notion defined relative to a particular
representation.

To arrive at a simple rigorous characterization of the vacuum con-
sider first that a vacuum E must in any event be a stationary state,
i.e. it must satisfy

E(C,(A)) = E(A)

for all t. Now for any such state the representation structure associated
with E as above may be augmented by a one-parameter unitary group
Ut (- oo < t < xo) determined in the following way

0(4,(A))v = U,(A)v,

which implies in particular that Ut leaves t, invariant, for all t. This
group U, may be constructed along lines generally similar to those
briefly indicated. It will not necessarily be continuous, but if there is
to be an energy operator, a rather modest desideratum, it must indeed
be continuous, for the energy is the generator of this group U, giving
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the temporal development of the system in the representation deter-
mined by the vacuum. This continuity is equivalent to the assumption,
which we now make, that E(C,(A)B) is for any A and B in ,9 a contin-
uous function of t.

The (clothed) hamiltonian or energy operator of the system is then
the self-adjoint operator H given by Stone's theorem, such that
eu" -= U,, - o < t < oo. Since the vacuum state representative, v, is
invariant under the U,, H annihilates v. The conventional formulation
of the vacuum may now be utilized and E defined as a vacuum (relative
to the given motion) in case v is the lowest "eigenstate" of H, or in
other terms, if H is a non-negative self-adjoint operator.

Both mathematically and physically it is clear that in general a
vacuum state neither exists nor is unique. Either feature represents a
non-trivial property of the motion C,. However, in relativistic quantum
field theory, it may reasonably be anticipated, again for both sorts of
reasons, that the vacuum will exist and be unique. On the other hand,
there are other physical desiderata pertinent to the physical vacuum and
these should be examined before going further with the given definition.

In the case of a relativistic system, there will be associated not only
a one-parameter group {4,} of automorphisms representing the tem-
poral development of the system, but more inclusively, a representation
g -* •. of the entire Lorentz group by such automorphisms, agreeing
on the time-translation subgroup with a non-relativistic one-parameter
group of the sort just considered. It is plausible that the vacuum
should be invariant under the full Lorentz group, i.e. that E should
satisfy the equation

E(C,(A)) = E(A)

for all A in .f and Lorentz transformations g. A priori one might
expect to characterize the vacuum for a relativistic system through this
requirement, and such a purely algebraic condition would appear to
have some advantages over the one previously given, which can not be
stated in such direct terms involving as it does the representation
structure associated with the state. However, it turns out that although
no Lorentz-invariant states other than the vacuum are known con-
ventionally such do nevertheless exist. Thus, Lorentz-invariance is in
itself insufficient to characterize the vacuum; positivity of the energy,
as defined above, must be added and, when this is done, invariance
under the temporal development is as effective as Lorentz-invariance.

A different sort of desideratum is the possibility of a particle inter-
pretation. For making the connection with empirical physics, the
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particle interpretation is crucial. Nevertheless, its theoretical develop-
ment and interaction with field theory in general has been rather
difficult and quite tentative. It will be enough here to indicate what
can be done with the general definition of occupation number given
above and, for this purpose, let us assume, that as in conventional
practice (O, B) is derived from a unitary space 1.

If .' is any subspace of,*' of finite dimension or co-dimension, the
operation V,: x -, eu'x, where P is the projection on JV0 whose range is
.0, is symplectic, and induces an automorphism ij of the Weyl algebra
over W. Occupation numbers relative to a physical vacuum E may
now be defined in a heuristic way as follows. Let [N,; - oo < I < oo]
be the one-parameter group on the representation space -' associated
with E as above, defined by the equation

Nt(A)v = 0(Y,(A))r,

A being arbitrary in .4. Then N2, = 1, from which it follows that the
proper values of the diagonalizable generator n of this one-parameter
group are integral. The other properties which occupation numbers
notably should have are: the total momentum of the field (for any
given type of momentum, forming a generator of the fundamental
symmetry group, as usual) should be the sum of the products of the
occupation numbers with the indicated momenta; the occupation
numbers should transform in the obvious manner under a kinematical
unitary transformation. In addition, the occupation numbers must be
non-negative, or an interpretation in terms of anti-particles must be
available; and in the familiar formalism, the occupation numbers are
self-adjoint. While the first pair of these desiderata is satisfied, the
second is not necessarily satisfied. While it is not entirely clear how
serious the latter requirements are from a physical standpoint, it is of
interest to inquire what properties a state of a Weyl algebra must have
so that when interpreted as a physical vacuum, all of the particle-
interpretation features mentioned are valid.

The self-adjointness of the occupation numbers is equivalent to the
invariance of the physical vacuum under the automorphisms of the
Weyl algebra induced by the cited phase transformations in the under-
lying (i.e., so-called "single-particle") unitary space. This is a strong
condition, but is insufficient to fix the vacuum uniquely as the con-
ventional free field vacuum. In fact there exist continuum many
regular states which are Lorentz invariant and for which the corres-
ponding occupation numbers are self-adjoint; these states are even
invariant under all the automorphisms of the Weyl algebra induced
by the unitary operators on .
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The non-negativity requirement, however, is much stronger than
might appear; it suffices to pick out the conventional free vacuum. A
somewhat similar result applies to more general algebras of observables
associated with a Hilbert space .9' (e.g., to Fermi-Dirac as well as to
Bose-Einstein systems). To state this, suppose there is given for every
unitary operator U on JAV (in physical terms, for every single-particle
motion) a corresponding unitary operator /XU) on a Hilbert space
.* (i.e. a corresponding "field" motion), such that r forms a continu-
ous representation of the unitary group on .'. Assume also that the
infinitesimal generator dJ(T) of the one-parameter unitary group
S [le"r); - oo < t< xo] is non-negative when T is non-negative. (The
non-negativity of the occupation numbers is the special case of this
when T is a projection; but in a formal way this special case is equi-
valent to the general case, in view of the formal expression available for
any non-negative self-adjoint operator as a non-negative linear com-
bination of projections.) Then .V is a direct sum of irreducible
representation spaces of the essentially classical type, i.e. the spaces of
tensors of various symmetry types over .$, as in the work of Schur for
finite-dimensional spaces .*', suitably topologized and completed in the
case if infinite-dimensional .A". The Weyl algebra case is just that in
which exclusively symmetric tensors are involved.

The main effect of these results is to confirm the validity of the first
approach to the physical vacuum given in this chapter. In general,
invariance requirements do not suffice to fix it, but non-negativity
requirements on either the energy or the occupation numbers, together
with rather elementary invariance requirements, will at least suffice to
pick out the free vacuum, and in the case of the energy may reasonably
be expected to apply in rather more complicated cases.

The free vacuum has played a part in the preceding discussion, as a
special case in which to experiment with general notions about a
physical vacuum, and is important in the mathematical and physical
development, so that it is well to be explicit about it. It may be
convenient as well as in analogy with common heuristic physical
practice to speak of the algebra .a as being "clothed" by the designa-
tion of a particular vacuum. The simplest vacuum is that which is
completely unclothed, from a common physical outlook; in various
contexts it is described as the "bare," "free," or "Fock-Cook"
vacuums (the last name after the physicist and mathematician who first
set it up in a clear-cut way). The rough idea is that the imposition of a
non-trivial dynamics displaces the vacuum (i.e. it is no longer invariant
under the temporal development), and so "dresses" the field, the new
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(physical) vacuum relative to the original (bare) vacuum consisting of
a kind of "cloud" which "clothes" it. At any rate, the free vacuum
and various mathematical structures associated with it play an im-
portant part in conventional theoretical physics and one can not expect
to deal effectively with more general varieties of physical vacuums
before this particularly accessible one has been explored. The next
chapter will deal with the free vacuum, as well as some interesting re-
lated purely mathematical work (such as a variety of analysis in func-
tion space) and it may be useful to conclude this chapter with an
indication of how it may relate to the vacuum of a specific interacting
field, which will provide incidentally an example of non-trivial
clothing.

Actually, the "free physical" field is regarded in theoretical physics
as "clothed" relative to the "bare" field. Since empirical observation
can be made only when there is interaction, the "bare" field is con-
sidered to be a purely mythical object by physicists, except as a
mathematical entity. On the other hand, the observation of apparently
free physical particles is an experimental commonplace and physicists
commonly assume there is a free physical field closely related to reality.
Since from a purely mathematical point of view this free physical field
is taken to be identical with a bare field (with suitable physical
parameters, e.g. the empirical physical mass will be used in the under-
lying field equations), the free field is mathematically as trivial as a
bare field although it is "clothed" in the sense indicated.

To try to limit some of the confusion that tends to arise between
"bare" and "clothed " fields, we shall use the term "zero-interaction"
vacuum or field, generally in a purely mathematical way.

In the presence of interaction, the vacuum will differ from the
zero-interaction vacuum and from one point of view this is the whole
problem of field theory, virtually; but nevertheless the vacuum of the
interacting field and that of the non-interacting one are in severai ways
closely related.

To set up a simple but relevant case, let ,* be a unitary space, .Qf the
Weyl algebra over J*, and E the universal vacuum described above.
Let •o be any inhomogeneous symplectic automorphism of C. If C, is
the "free" motion of .V/, or mathematically simply a one-parameter
group of automorphisms of Q( inducible by a continuous one-para-
meter unitary group in the "free-field" representation, then C =
y0tyo- I is a new motion which can be rather thoroughly analyzed. In
particular, its vacuum state is Eo, i.e. the result of the contragredient
action of y. on E. This will in general be quite different from E; in
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fact, it may well happen that ELo is not representable by any state
vector in the free-field representation.

Any attempt to determine a state vector for ELo, such as is made in
conventional practice, will necessarily lead to a "divergent" expres-
sion, such as those involving infinite constants. That such an expres-
sion may be manipulated so as to arrive at finite, meaningful results,
is not surprising, since it is in essence simply the rather ponderous
result of translation of the simple state Eo into an inappropriate and
analytically untenable but algebraically tolerable framework.

A simple example of this is provided by a familiar soluble model
considered by N-n Hove and others, which is supposedly representative
of the key (so-called "ultraviolet") divergences of quantum field
theory. To present this example in a quite elementary way, let us be
initially heuristic and write the free and interaction hamiltonians
simply as

Ho = 0 /2)E(ckpD + d~qk) (ck > 0;dk > 0; k = l, 2,.
k

H, = I (akpI, + bqk),
k

in terms of canonical variables pl, q1 , P2, q2,•. In the conventional
field theory of several years ago, the "bare" vacuum is the lowest
eigenstate of the "free-field" energy H., while the "physical" vacuum
is the lowest eigenstate of the total hamiltonian Ho + H, (i.e. the
eigenvectors of least cigenvalue). The fundamental difficulty in
quantum field theory, from one common outlook, is that although Ho
has a perfectly good interpretation as a self-adjoint operator, H, has
remained apparently meaningless as an operator, without significant
mathematical change since operators of a similar type were introduced
in the first published work on quantized field theory (Dirac (1927)).
People have tried in many ways to make sense out of H,, but it is only
with "renormalization," a partially ad hoc removal of infinite terms,
that even quite partial results in this direction were attained.

What van Hove did was to show (for the particularly simple case
when the ak and bk were scalars, and not operators as in physically
more complicated cases) that conventional field-theoretic methods led
to still another indication of the lack of mathematical meaning of H,:
the physical vacuum state representative was orthogonal to all eigen-
states of Ho. There have been a number of paradoxes of this type
(notable among them is one of Haag) and some people have even
questioned the validity of the conventional foundation of quantum
phenomenology in terms of Hilbert space.
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To perform the indicated subsumption it is necessary, in view of the
purely figurative existence, at this stage, of H,, to work in a partially
formal manner. What is mainly involved is the transformation of the
total hamiltonian by completion of the square,

(I/2Xckp2 + dkqk) + (akpk + bkqk) = (I2)ckdk (p12 + q12) + const.,
where

P= (c kd•)(' 1 'Pk + (ak/ckXCkdk)'" 2 •,

qk' = (d1cJ ),' 2'qk + (bk/dk•)ckdk)' 1 12 ).

The pk and qk (k = I, 2, • - -) form a new canonical system, related to
the original one by an inhomogeneous symplectic automorphism; to
see this it suffices to examine the one-dimensional case, in view of the
lack of cross-terms between different indices, i.e. such a transformation
as

p-ap + r, q--*a-'p + s.

The corresponding z's (elements of the phase space) may be taken
to have the form z = (u, 0), u and v being real numbers here, with
R(z) taken as (the closure of) up + rq, and the fundamental form:
B[(u, v), (u', u')] = uv' - u''. The inhomogeneous symplectic auto-
morphism

R((u, 0)) -- R((au, a -`) + (ru + sv)

then carries p and q into the indicated new canonical variables.
The relevant formal development is now complete, and we may

proceed to the rigorous formulation of the free and physical fields
in question here. Let _# be the space of all ordered pairs z of infinite
sequences of real numbers, each sequence having the property that
all the numbers vanish from some point onward:

Z= (u,, U2, ... ; r. 1'2, • ) (uk = rk = 0 for sufficiently large k).

Define <z, z') = J_(uky + VkUk) + i k (UV'1 - UI'Vk). Let Q( be the
corresponding algebra of field observables, and let qf, denote the
algebra of all bounded functions of finite sets of the p's and q's. We
first define the free vacuum E on the subalgebra V0 . Let X be an
arbitrary element of .c/o, say a function of pi, •.*, p. and qj, •, qR.
Let p,., p',, q'1, •, qn denote, respectively, the operators

- i9/•xI, .. , -if x1, •., x,,

formulated as self-adjoint operators in the usual way in the Hilbert
space L 2(E,) of all square-integrable functions on n-dimensional
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euclidean space. There then exists, by the corollary to the Stone-von
Neumann theorem described above, a unique algebraic isomorphism
of the ring of all bounded functions of the ps," •. , p., qI, • • , q. with
the corresponding ring for the primed set of canonical variables. This
correspondence will take X into a well-defined operator X' on L2(EJ).
We now set

Eo(X) = (X'v, v),

where I, denotes the function on E.,

r(x) = (0)- 'exp - dxk/2l x

k-ICk k-1 \dk

Now it is a familiar fact that v is the lowest eigenfunction of
cIp 2 + d~q2 in one dimension, p and q being the usual operators in
L2 ( - 0, r)-. It follows in particular that E0 is invariant under the
one-parameter group generated by H0, whose action is determined by
its action on the elements of V., this being:

x-xp it >(ckp + Xcx [- >(cXp + dkq')!2].

In addition, it is readily verified that Eo is uniquely defined, linear,
positive, and normalized on , and it is immediate that IEo(X)f 1 : Xt!,

X' denoting the bound of the operator X. It follows that E& extends
uniquely to a state E of ./ that is invariant under Ho.

We have thus set up in a rigorous way the bare vacuum. To deal
similarly with the physical vacuum, let 0 denote the inhomogeneous
symplectic automorphism of A which carries

R(:) - *R(Tz) + f(z),

where

T: z = (uI, U2, • • '•, " •. ) ' - (rjul, r2u2 , ; rj ILt,, r2 't 2,

f(:) = 1 (Uk'k + COO),
k

rk = (cjdkY)'1 2 ), sk = (ak/ckXckdk)-'012 ), tk = (bkldkXckdk) -012 ).

Then the physical vacuum E' is defined by the equation

E'(X) = E';'(X),

i.e. as the state into which E is carried by the induced (contragredient)
action on the states of canonical transformation (= automorphism of

Ii
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the algebra of field observables) yo. This physical vacuum is a mathe-
matically rigorous object, devoid of divergences, and arrived at in a
simple if slightly sophisticated manner.

How is it then that from the point of view of older conventional
field theory this model is divergent? The answer is that it was tacitly
effectively assumed that the physical vacuum should arise from a state
vector, in the same representation as that in which the free-field
vacuum was such. In fact, no calculus of states was employed except
that based on the representation of states through vectors. Thus the
bare vacuum was taken to have the form

E(X) = (X00, #o),

while the physical vacuum was to have the form

E'(X) = (X0,, 00),

#0 and 00' both being "unit" vectors in the underlying state vector
space, say .1. Van Hove's paradox is then that 00 can be formally
demonstrated to be orthogonal to the eigenvectors of H0 , which on
the other hand span .1.

The mathematical fact is simply that there exists no such vector 00'
in .*'. This is connected with the non-implementability of the canonical
transformation 0 by a unitary operator in the zero-interaction repre-
sentation. If such a unitary operator existed, say r (figuratively), then
one could take simply ,/, = #,, and in terms of concrete operators on
K, one would have

E'(X) = (XrAo, roo) = E(r-'x).

(It may be helpful to note that formally one would have
r'-I(Ho + HI)r = Ho;

transformation by r of the fact that Oo is the lowest eigenvector of H0
then shows that #oo = 00 is the lowest eigenvector of Ho + H,.)
However, it is mathematically demonstrable (see the cited references)-
that /r does not exist. Nevertheless the purely figurative expression
r- 1X/r can be given a rigorous mathematical interpretation, and E'
can be well-defined, as indicated above. The mathematical non-
existence of Ir suggests, but does not in itself establish, the non-
existence of a vector 00 in K such that E' will have the form

E'(X) = (X0,•,, 00);

this however is mathematically demonstrable. In this connection a
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quite general result of Shale is noteworthy. It asserts, roughly, that if
T is any homogeneous symplectic transformation on a complex
Hilbert space, which is not of the form UV, with U unitary and
V = I + W, with W essentially Hilbert-Schmidt in a certain sense,
then the transform of the associated bare vacuum by the induced
action of T is non-normalizable in the zero-interaction representation.

We should perhaps explain that a state E is said to be normalizable
if it arises from a state vector # in the fashion familiar in elementary
quantum mechanics, E(X) = (X0, 0). This is of course a property
not only of the state and algebra of observables, but also of the re-
presentation of the observables by concrete operators on a Hilbert
space. As noted earlier, every state is normalizable in some repre-
sentation. Non-normalizable states are familiar in elementary quan-
tum mechanics in connection with the continuous spectrum. If T is
a self-adjoint operator in a Hilbert space, and A is a point of the con-
tinuous spectrum of T, then there exists (quite rigorously) a state of
the system of all bounded operators, in which T has the exact value A;
but this state can not be normalizable. In a heuristic fashion this
state may be represented in terms of a non-normalizable eigenvector
for the eigenvalue A, as is rather familiar. It is also familiar that such
non-normalizable states are sometimes convenient to use for intuitive
physical purposes, and can be dealt with in a mathematically and
physically conservative way through the use of eigenvector packets.
In the present case the non-normalizability has no such connection with
the continuous spectrum of any operator (the total energy, of which
0.' is in the older conventional figurative sense an eigenvector, has
discrete spectrum) and packets cannot be used effectively. However,
the von Neumann formulation of states as linear functionals is applic-
able in even more effective form than in the case of a system of a
finite number of degrees of freedom. The present physical vacuum
state E', although non-normalizable in the zero-interaction representa-
tion, is nevertheless "regular," i.e. mathematically quite smooth; in
particular, E'(elR(')) is a continuous function of z relative to any
finite-dimensional subspace of variation for the point z of the classical
phase space. For systems of a finite number of degrees of freedom,
the states which arise from the continuous spectra of observables are
in contrast not regular and in particular E'(e'l()) need not be an
everywhere continuous function of the point z in phase spac.t

By virtue of the mutual correspondence between states and repre-
sentations of C*-algebras already mentioned, the physical vacuum
state E' will determine a Hilbert space .41, a concrete set of self-
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adjoint canonical variables over the classical phase space .4 which are
represented in -1", and other elements of structure, including notably
a vector 0,, in Y1' such that

E'(X) = (X'Oo4, Oo4);

here X' denotes the concrete operator on Yr' corresponding to the
element X of the algebra of field observables. This vector 00' is per-
fectly normalizable, etc., but it is not in the original Hilbert space Y.
The spaces Y and _V" are quite distinct; an isomorphism preserving the
relevant elements of structure does not exist, due precisely to the
non-normalizability of E' in the zero-interaction representation.

The apparently mathematically meaningless, figurative, operator
Ho + H, can now be interpreted as a self-adjoint operator in .. ", in
the strict mathematical sense. This operator arises as the generator
of the one-parameter group of unitary transformations in .Y' which
are induced by the one-parameter group of automorphisms of the field
observables obtained by transforming by yo the free-field dynamics.

This has been a rather lengthy interpolation, but it should serve to
show the importance of the zero-interaction vacuum state and repre-
sentation even for the treatment of interacting fields, as well as to
indicate that some interacting fields which are indubitably divergent
from the older conventional standpoint can now be formulated in a
mathematically unexceptionable way, which is at the same time
somewhat more directly physical. It is appropriate now to enter into
a rigorous and invariant account of the mathematics of the free vacuum.

References to Chapter V

See Segal (1959b and 1961), and the literature cited there for the
main sources of the present chapter. The van Hove model cited is
treated in his 1952 paper. His later more sophisticated models, de-
veloped from this original one and the Lee model, derive expressions
for the physical vacuum and single-particle states which may well be
rigorously explicable by a variant of the method of the present chapter.



CHAPTER VI

Representations of the Free Field

Various non-commuting operators occur in the theory of free fields
and, depending on which ones are of special relevance, any one of three
different representations, each of which diagonalizes certain of these
operators, or otherwise permits their representation in simple form,
may be advantageous. These representations may be described as:
(I) the renormalized Schrbdinger representation, an infinite-dimen-
sional adaptation of the conventional Schr~dinger representation (in
this the field operators have a simple form, the kinematical transforma-
tions a fairly simple form, and the occupation numbers a relatively
obscure form); (2) the Fock-Cook representation (in this the occupa-
tion numbers, as well as the kinematical transformations, are simple,
while the field operators are relatively complicated); (3) the holo-
morphic functional representation (in this the creation and annihilation
operators, as well as the kinematics, are simple, while the occupation
numbers and the fields are less so, and the physical interpretation of the
wave functions relatively difficult). All of these representations are
naturally unitarily equivalent, essentially in canonical ways. The only
one which appears in fairly clear-cut, if mathematically heuristic, form
in the conventional literature, is the Fock-Cook representation. How-
ever, what we have called the renormalized Schr~dinger representation
can be regarded as a covariant description of an essentially familiar, if
mathematically vague, description of the states of the free field in
terms of infinite products of hermite functions. In addition, the
quasi-canonical equivalence between these two representations can be
regarded as a more explicit and covariant formulation of what Dirac
describes as the representation of an assembly of bosons as a set of
harmonic oscillators.

The adaption of the Schrodinger representation to the infinite-
dimensional case depends on the development of analysis in function
space along lines initiated by Wiener. The Wiener space itself,
however, is not especially convenient for or relevant to field-theoretical
applications, especially where covariance questions are involved. It is

73
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convenient rather to make the analysis directly in the Hilbert space of
classical states.

Let •r be a real Hilbert space. If .*' were finite-dimensional, the
Schrbdinger representation, with the suppression of the factor A in the
definition of the canonical P's, yields a finite set of operators satisfying
the canonical commutation relations. The infinite-dimensional case
resisted a parallel treatment for some time because of the apparent
lack of a suitable analogue to ordinary Lebesgue measure for Hilbert
space. In fact, people proved that nothing approaching a halfway
decent measure, in the conventional Lebesgue sense, could exist on a
Hilbert space; to a literal-minded adherent to the classical Lebesgue
formulation, such work as that of Feynman resembled a variety of
scientific poetry devoid of apparent mathematical substance.

It turned out actually that when the real needs for and uses of in-
tegration and harmonic analysis in Hilbert space were kept firmly in
mind, an effective and simple development of analysis over Hilbert
space (i.e. analysis analogous to that of functions on euclidean space,
except that the finite-dimensional euclidean space is replaced by a
Hilbert space) was quite possible. The novelty of the integration could
be assuaged by a reduction of it, if desired, to integration of the con-
ventional variety over Wiener space or any of various related spaces of
stochastic processes. But with the use of newer ideas about integration
of a more operational character, it was a simple matter to give a
direct formulation of the relevant integration theory, which is useful
also in treating general representations of the Weyl relations. As far
as applications to field theory go, there appears to be about as much
need to introduce a special space on which to hang a countably-additive
Lebesgue-like version of the virtual Hilbert space measure as to in-
troduce an ether in connection with the Maxwell equations. On the
other hand, the Wiener space is directly relevant to questions concern-
ing Brownian motion, whose connection with the Laplacian makes
analysis in the space useful in connection with the non-relativistic
treatment of systems of a finite number of degrees of freedom whose
hamiltonians involve the Laplacian.

To arrive at a notion of integration in a linear space of possibly in-
finite dimension, one may generalize the notion of probability dis-
tribution on the space. A probability distribution on a linear space .Y
makes any linear function over -Y' into a measurable function, with
respect to the given distribution, and thus determines a linear map F
from the dual Y* to random variables (= measurable functions,
essentially) on a measure space (some elementary topological
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restrictions being required in the case when Y is infinite-dimensional).
Conversely, any such map determines a.probability distribution on 40
uniquely, when Y is finite-dimensional. For Y infinite-dimensional
there are however such linear maps, indeed such of quite a regular
sort, that do not arise from any conventional probability distribution
on 7. In fact, in quantum field theory as well as in the theory of
stochastic processes the relevant distributions are frequently of this
type.

For example, if x(t) denotes the conventional Brownian motion
process on the time interval 0 5 t <= I, and Y is L2(0, I), then the map

f(t) - f(t) dx(t)

where f(t) denotes the function which determines an element of the
dual Y7 of L2(0, I) (i.e. the element taking a general g in L2(O, 1) into
f I g(t)f(t) dt), is a distribution in the indicated generalized sense, which
does not arise from any countably additive measure on subsets of 7.
The integral in question is the Wiener stochastic integral and the
mapping in question is precisely that which establishes the connection
between integration in a real Hilbert space and in Wiener space.

Now defining a distribution on a topological linear space Y as a
linear map from the dual Y* of Yf to random variables on any proba-
bility space (the conventional type of distribution given by a com-
pletely additive measure is relatively less important in the case of an
infinite-dimensional space and may be referred to more logically by a
special term which we do not need to introduce as we shall have no
occasion to refer to it), this definition is of course effective only if one
can then integrate suitable functions on Y. Now if - is the collection
of all functions on YJ that depend continuously on a finite number of
linear functionals, and are bounded, then it is evident that 9F is an
algebra and it is clear how the expectation of any element f of i, say
E(f), should be defined, if one thinks about it for a moment. This
structure (.4, E) consisting of an algebra with a distinguished linear
functional on it is easily seen to have certain properties which are
known to characterize (weakly) dense subalgebras of the algebra of all
bounded measurable functions on a (countably additive) measure
space, together with the integral as functional E, this measure space
being essentially unique (apart from special labelling of the points or
sets). The Lebesgue theory is thereby applicable. Actually, the
Lebesgue theory may be readily dispensed with and the whole theory
built up on the basis of an algebra-cum-positive linear functional. In
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either way the space L2(-w) acquires definite meaning and becomes a
viable Hilbert space although not all elements of it are represented by
actual functionals on .- this is the main difference between the present
situation and that involving integration with respect to a countably
additive measure on a measure space.

Any -Y is the inverse limit of quotient spaces in such a way that the
integral over L is a limit of countably additive integrals on these
spaces. Alternatively, the integral can be derived from a finitely
additive measure on .? which is countably additive on the subsets
invariant under translation by the vectors in any fixed kernel subspace,
-or from countably additive measures on each finite-dimensional sub-
space, in the case of a Hilbert space. This approach is superficially
closer to a conventional measure-theoretic one, but is not particularly
helpful otherwise.

To give an example, let *' be a real Hilbert space. Among the
simplest interesting properties a distribution n might have which
connect with the Hilbert space structure are: (I) unitary invariance,
i.e. the joint distribution of n(x,),..., n(Xk) and of n(Ux1), n(UxA),
for any unitary operator U and vectors x1, •., Xk in *' (which is hence-
forth canonically identified with its dual-so we may take a distribu-
tion on a Hilbert space as being a linear map on the space itself) are
identical, and (2) equivalence of orthogonality and stochastic indepen-
dence, in the sense that two mutually orthogonal sets of vectors in J*'
are taken by n into two stochastically independent sets of random
variables. It turns out that such a distribution exists and is essentially
unique (a fact due essentially to Kac for the basic case in which .*,
is two-dimensional). It may be called the isotropic centered normal
distribution: for any vector x in V, n(x) is normally distributed with
mean 0 and variance cJxI 2.

In the case of a finite-dimensional space, analysis based on ordinary
euclidean measure may be readily seen to be equivalent to analysis
based on the centered isotropic normal distribution; the point is that
the two distributions are mutually absolutely continuous. In the
infinite-dimensional case there is no direct analogue to ordinary
euclidean measure, but one can get good counterparts to most of the
global theorems in euclidean analysis in terms of the normal distribu-
tion. Actually it is simpler for some purposes to work in terms of the
normal distribution even in the finite-dimensional case.

As an illustration of how finite-dimensional results may be adapted
to the infinite-dimensional case, consider the Plancherel theory.
Formally physicists frequently write such integrals as fH e*"-)f(x)dx
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over a Hilbert spaceir*. Such an integral has merely figurative exist-
ence, but one can make a certain "infinite renormalization" and
replace the Fourier transform by a mathematical rigorous Wiener
transform, which is rigorously equivalent to the Fourier transform in
the finite-dimensional case and formally a substitute for it in the
infinite-dimensional case. Specifically, one has the following theorem:

The tran.formation on the algebra .9 of all polynomials over 9r,

f(x) -- ff(21i2x + iy) dn(y)

extends uniquely to a unitary transformation on L2(Jr•, n) whose inverse
on Y is

F(x) f (21/2x - iy)dn(y).

In the finite-dimensional case one readily deduces from this the
Plancherel theorem, essentially by completing the square in the ex-
ponentials involved. The Wiener transform defined above has the
distinctive special property of mapping polynomials into polynomials.
It should perhaps be mentioned that a polynomial on a Hilbert space
is simply a polynomial in the usual sense in a finite number of co-
ordinates on the space. A similar transform was established by
Cameron and Martin for functionals on Wiener space at a relatively
early date. Through the connection of Wiener space with a real
Hilbert space the relationship to the conventional Fourier transform
is visible.

A good deal more might be said about analysis over a Hilbert space,
but for brevity and because some of this is implicit in the formulation
of the renormalized Schr6dinger representation, we simply state the
form of the canonical variables in this representation.

For ant, vector x in .1, let Q(x) and P(x) denote the seif-adjoint
generators of the one-parameter unitary groups {A(tx); - oo < t < oo)
and {B(tx); - o, < t < rx} respective/v, where these operators act on
L2(.0) as foliows:

A(u): f(x) - exp [i(x. u)/2 112]f(x).

B(u):f(x) -- exp [-(x, u)/2112 - (u, u)/2 1/2]f(2112 u + x).

Then the canonical commutation relations hold, in the Weylform:

exp [- iP(x)l exp [iQ(y)] exp [iP(x)] exp [- iQ(y)] = exp [- i(x, y)fL

The distribution on H is the canonical normal one with variance
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parameter c = I (other values of c give materially different canonical
variables). In the finite-dimensional case the foregoing representation
for the canonical variables is unitarily equivalent to the Schrbdinger
one via the trivial operation of multiplication by a constant multiple
of exp [-(u, u)/4]. Strictly speaking the A(u) and B(u) above are first
defined on bounded continuous functions of a finite number of linear
functionals (coordinates), and then extended by continuity to all of
L2(H). The parallelism with the theory in the finite-dimensional case
may be illustrated by the fact that, just as the Fourier transform then
takes P(x) into Q(x) and Q(x) into -P(x), with the Schr/klinger P's
and Q's, the Wiener transform does the same for the present P's and
Q's, irrespective of dimension.

To lead up to the connection between the representation just
formulated and the Fock-Cook representation, observe that because of
the orthogonal invariance of the canonical normal distribution, there
is for any orthogonal transformation Von $' a corresponding unitary
transformation '( V) on L 20f): f(x) -*f( V 'x) (here again the in-
dicated operation must first be defined on the "nice" functionals de-
scribed previously, and then extended to all of L2(H)). Now it is
noteworthy that this representation may be extended, without enlarge-
ment of the representation space, to the unitary operators on the
"complex extension" of.A, i.e. the complex Hilbert space A' indicated
by the notation .*' = -*' + iM'. The simplest such unitary operation,
that of multiplication by i, turns out to be, e.g., just the Wiener trans-
form. Now the reduction into irreducible constituents of this extended
representation is from a physical viewpoint just the reduction of the
state vector space of the field into the direct sum of the n-particle sub-
spaces; from a probabilistic point of view not involving fields and
particles, virtually the same reduction occurs, in the Wiener space
representation, in Wiener's well-known homogeneous chaos paper. It
turns out that for each non-negative integer k, there is a subspace
.,&, of L 2(J*), which transforms under the action of the r(U), just like
the (covariant) symmetric tensors over .'" of rank k; and this repre-
sentation, in the space .#, of symmetric k-tensors, is irreducible, as it
is well-known to be in the finite-dimensional case. The infinitesimal
generator of the one-parameter unitary group {'(en); - oo < t < co}
is the operator known physically as the "total number of particles
operator," and the most general bounded operator commuting with
all f(U), U unitary, is simply a function of this particle operator N.
The action of N on its eigenmanifold equivalent to .ek is, as the
terminology indicates, merely multiplication by k.
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"This leads to an explicit equivalence between the renormalized
Schr6dinger, or "wave" representation, and the Fock-Cook, or
"particle" representation, which corresponds to the wave-particle
duality in a quantum field. To describe the latter representation
explicitly, we define a covariant tensor of rank k, over a complex
Hilbert space .W, as a multi-linear functional , on the k-fold direct
sum of copies of the dual of r.* with itself

(41., '''-xk* -+ €¢x*I,..., xk*);

a symmetric tensor as one satisfying the condition

0411*... •. x,,)) = 4,x*,. ., x)

for any permutation of the indices 1, • •., k; and square-integrable (or
normalizable) tensor as one satisfying the boundedness condition

when the e, constitute a maximal orthonormal set in 0. It is de-
monstrable that if this boundedness condition holds for any one
maximal orthonormal set, then it holds for any other, and in fact the
inner product

(#, '') E 4e ,..(e,, e,,)4'(ej,,, ., e,)

is independent of the choice of basis for square-integrable tensors. It
then follows that the covariant square-integrable k-tensors over JV'
form, in a canonical way, a Hilbert space relative to the stated inner
product, of which the symmetric tensors form a closed subspace .'k,
the space of all symmetric covariant k-tensors over .#'.

If for example k = I, then this space, .*'I, is canonically identical
with .0'. For k = 0, it is convenient to define a tensor simply as a
constant (complex number), and consider all 0-tensors as symmetric
and square-integrable, and to formulate the corresponding space .A% as
a one-dimensional Hilbert space relative to the inner product:
(a, b) = ab. The direct sum ",. of all such tensors is then a
Hilbert space .r' canonically associated with .*'. For any unitary
operator U on .0 it follows that there is a corresponding unitary
!(U) on .)'; specifically, r(U) takes the vector 0 in .0", into #', where

0'(x*, ''', X*4) = ,((Ux,)* . , (Uxk)*),

x* denoting for any vector x in .)F' the linear functional: y -+ (y, x).
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There is no difficulty in verifying that r(UU') = P(U)IPU') for
arbitrary unitary operators Uand U' onW, and that the map U -. IYU)
is continuous, so that r affords a continuous unitary representation on
.X of the full unitary group on W,. It might be mentioned parentheti-
cally that r is a remarkable representation from a purely group-
theoretic point of view, having in particular the property that if R, is a
representation of a group G on a Hilbert space *,, (i = I, 2), then
.;r(.tr, + JV' 2) is canonically isomorphic with . x(,,") x .(.*2), so that
[IR 1(g) + R 2(g)) ! F(R,(g)) X R(R 2(g)). This means that, roughly
speaking, r behaves like the exponential function for representations;
and it might be of purely mathematical interest to determine all such
universal representations satisfying the same functional equation, etc.

If x is any vector in .,V, and x* is the corresponding element of ,,*,
the operation -* 0' taking a k-tensor 0 into the (k + 1)-tensor 0'
given by the equation

(k + l)!O'(u*'. •,u* 1)

(k +- I )(1!2) • (x, 1* *(X. X(iw t)• S "I,•'" AM4•i, " • .(k)),

(v ranging over the group of all permutations of I, 2,.., k + I),
where the ' over the u* signifies that this variable is deleted, has a
unique linear extension to the algebraic direct sum •/ of the.,f, which
as an operator on the Hilbert space .)r- admits a closure C(x) called
the "creation operator for an x-particle." Its adjoint C(x)*, whose
domain also includes fl, is called the "destruction operator for an
x-particle." The nomenclature here derives from the fact that C(x)
increases the "number of x-particles," as defined above with the use of
the representation r' just defined, by one, while C(x)* decreases it by
one when acting on a vector representing a state including at least one
x-particle.

It is not difficult to check that the operators Co(x) and C*(x) ob-
tained by restricting C(x) and C(x)* to 2 satisfy the relations

[Co(x), Co(O)*I = - (x, y),

from which it follows that if Ro(x) is defined by the equation

Ro( :) = (Co(x) + C*(x))/2 1
/2,

then
[Ro(x), Ro(y)J = - i lm(x, y).

This indicates that Ro(.) may be extendable to a set of generators for a
Weyl system, and a rigorous analysis shows that this is in fact the case.
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Actually, about the most economical way to establish the Weyl
relations here is to set up the isomorphism of the tensor system just
described with the generalized Schrbdinger system described earlier
and use the validity of the relations in that system. To describe this
isomorphism, let .V" be any real Hilbert space such that Jr = W' + Or',
i.e. *' is the complex extension of JV". Any element of the dene sub-
space fl of the normalizable symmetric tensors over J1 gives a simple
functional on ,,r* when all the variables are set equal to a single
variable x*, in fact the resulting functional is a polynomial over Jr*.
Its restriction to .0" is therefore in the domain of the Wiener transform
for an arbitrary variance parameter, in particular the parameter 1/2.
Now transforming a given such k-tensor successively into the indicated
functional on .,•* and applying the Wiener transform on J*' with
variance parameter 1/2, and multiplying the result by (k!)-(•2), the
resulting polynomial on .,' is defined as the corresponding functional
in L2(0#') to the given symmetric tensor. (Note that the relevant
distribution on .Y" has variance parameter I, not 1/2.) It can be
shown that this correspondence extends uniquely by linearity and
continuity to a unitary transformation of the space .V of all normaliz-
able covariant symmetric tensors over. r onto L2(X'), in such a manner
that Ro(:), as defined above, is carried into an operator in L2(Of")
whose closure is the self-adjoint generator R(z) of the Weyl system
associated with that space in the manner indicated above.

There is another representation which is somewhat similar to the
renormalized Schrodinger representation, but differs from it in that the
representation space consists of functionals on the classical phase space
0', rather than a real part .$' of 0f, and attains irreducibility through
restriction to holomorphic, rather than arbitrary square-integrable,
functionals. This representation has not as yet been employed in a
clear-cut way in the literature, but it clarifies the structure of the
creation and annihilation operators, and may well be useful in later
developments. The use of square-integrable functions over a phase
space as a representation space for dynamical variables is due originally
to Koopman, who investigated classical systems of a finite number of
degrees of freedom by these means, but without introducing field
variables or restricting to holomorphic functionals.

By a polynomial on a complex Hilbert space X' is meant a function
p() on 1' such that p(z) is expressible as a polynomial in the elementary
sense in a finite number of inner products (:, el),..., (z, e.), the el
being fixed vectors in .)'. The representation mentioned can be
effected canonically either on the anti-holomorphic functionals on Jr
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or the holomorphic functionals on the dual Jr* of.*J (a holomorphic
functional being a limit of polynomials in an appropriate sense). The
correspondence between these two sets of functionals is the unique
unitary one extending the assignment to any polynomial p on .J* the
anti-polynomial (i.e. complex conjugate functional to a polynomial)
p* defined as follows: if u E Jr, and if u* is the linear fuiictional given
by the equation u*(w) = (w, u), w being a generic element of Jr, then
p*(u) = p(u*). It will suffice to describe the representation in the space
of holomorphic functionals on 0**.

Let n be the centered normal distribution of unit variance on 0* as
a real space, and Y' the closure in L2(0*, n) of the set of all poly-
nomials on *.*. Let W(z) for arbitrary z in .*' be the unitary operator
on Y' uniquely determined by the property that it operates as follows
on polynomials p(u):

p(u*) -* p(u* + z*) exp I -(I/4Xz, z) - ( i2)u*(z)J,

z* denoting as usual the linear functional determined by z, u --- (u, z).
It can then be shown from the transformation properties of the normal
distribution under translations that W(.) is a Weyl system. For any
unitary operator U on .,, let F(U) now be defined as the unitary opera-
tor on .* uniquely determined by the property that it acts as follows on
polynomials:

P(u*) -- P(( Uu)*).

There is no difficulty in verifying that F is a continuous unitary re-
presentation on Yt of the full unitary group on JW. If v* denotes the
functional identically one on V*, it can be shown that we have here
the conventional free-field system, within unitary equivalence, with r
as the representation transferring single-particle to field motions, and
v* as the vacuum state representative.

One of the notable features of this representation is the particularly
transparent form in which the creation and annihilation operators
appear. It is straightforward to compute the restriction of the field
variables R(z) which serve as generators for the unitary groups with
which the Weyl relations are concerned and to derive from this the
actions of C(z) and C(z)* on the polynomials. The result is that, apart
from factors of ± ( - 1/2 )* 0i12), the creation operator for a particle with
wave function z acts as multiplication by (z, u), while the annihilation
operator acts as differentiation in the direction z (i.e. the unique
derivation on the algebra of polynomials on A'* taking u*(w), for any
w in Jr, into (w, z)).
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The relation between the holomorphic functional representation just
presented and the particle representation is a simple one. Any k-tensor
fdetermines a functional on.*'* by taking all the variables on which the
value of f depends to be the same, and this transformation is,
essentially, apart from constant factors, the unitary transformation
mapping the one field representation into the other. How these
various representations are used depends on the situation at hand.
For example, to derive the spectrum of the flow associated with
Brownian motion, the equivalence of the particle and the Schr6dinger
representation may be employed, yielding in a simpler though related
way the results first obtained by Kakutani (1950). On the other hand,
to make sense out of the notion of an exponential or other entire
function of a creation or annihilation operator, a problem which arises
if it is desired to represent exponentials or other functions of the
hermitian field variables R(z) in the so-called Wick normal form, the
holomorphic functional representation is the only one that seems
useful. It affords a type of pseudo-diagonalization for the non-
diagonalizable (as well as unbounded) creation and annihilation
operators and suggests an approach to such relatively intractable
operators whose development may have purely mathematical interest.

References to Chapter VI

The Fock representation (1932) was the first explicit, if rather
heuristic, formulation of a representation space for the operators of
quantum field theory. Its rigorous mathematical explication by Cook
(1953) provided the first rigorous formulation for quantum mechanical
variables and proofs of such basic matters as their essential self-
adjointness. The renormalized Schridinger representation was treated
by Segal (1956). In a general quantum-mechanical proposal, Siegel
and Wiener (1953) stressed the use of unitary groups arising from
groups of measure-preserving transformations, and noted how t-in-
work of Paley and Wiener yields a representation of the unitary group
on L2( - 0, orý) by measure-preserving transformations on Wiener
space. Rather remarkably, this representation is essentially equivalent
to the representation r of the unitary group associated with Bose-
Einstein quantization, with L2( - or-, 00) taken as the underlying Hilbert
space, while in the case of Fermi-Dirac quantization, measure-
preserving transformations on a "non-commutative measure space"
arise (cf. Segal (1956b)). In the heuristic treatment of Friedrichs (1953)
for Bose-Einstein quantization the representation r does not explicitly
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intervene, but an inner product for "Hermite functional." on Hilbert
space is defined in connection with the representation of field variables.
As noted earlier, the duality between the Fock (particle) and renorma-
lized Schrbdinger (wave) representation has its roots in the familiar
representation of a Bose-Einstein field in terms of an assembly of
harmonic oscillators and their associated Hermite eigen-functions,
which was treated at an early date by Dirac, Fermi, and others.

The holomorphic functional representation connects with a Weyl
system first formulated by Shale, with representation space taken as all
square-integrable functionals on a complex Hilbert space. This
representation was not irreducible, in fact the transforms of the unit
functional under the operators defining the Weyl system yield precisely
the holomorphic functionals, as shown by Segal (1962). It is betteradapted to the problem of non-linear relativistic quantization than
the other representations, and plays an implicit role in Segal (1960b).

fi



CHAPTER V11

Interacting Fields: Quantum Electrodynamics

The key mathematical question in connection with interacting fields
is not so much one of the validity of various theorems in the usual
mathematical sense, but rather of the effective formulation of the
concept of an interacting field. To be effective, there must be non-
trivial examples, but at the present time there are no non-trivial
examples at all which are relativistic and involve particle creation,
regardless of how the notion of interacting field is formulated. This
does not prevent the "theory of interacting fields" from being success-
fully applied in non-trivial cases, such as relativistic quantum electro-
dynamics, but it means that it is not really a theory in precisely the
usual mathematical physical sense. Rather, it is an assembly of
relatively special methods and ideas, largely of a heuristic and even
vague character, which have been able to deal with particular problems.
This is not to say the subject is without mathematical beauty, for
actually such could be regarded as the chief reason for its study; but
real assurance that this beauty is not, in crucial aspects, illusory, is so
far lacking.

Two mathematical approaches, the constructive and the axiomatic,
seem possible, but there is not a sharp line between them since in either
case a formulation, in part at least, of what a quantum field consists of,
is required. A number of different formulations have been given, all
of which can fairly be represented to codify aspects derived from
existing thought and heuristic practice concerning quantum fields.
Among these are e.g. the generating functional approach developed
by Schwinger; the approach in terms of vacuum expectation values of
products of fields studied intensively in recent years by KAllin and
Wightman; one along lines implicit in our earlier chapters, emphasizing
the use of the so-called in- and out-fields, and utilizing the representa-
tion independent formalism; and there are many others, some of which
are variants of the foregoing ones. It is quite impossible, in the nature
of things, to prove in a strict mathematical sense that quantum

85
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electrodynamics or any other interacting field does or does not exist;
the most that can be hoped for is that some reasonable set of analytic
desiderata can be shown to be valid or invalid relative to various specific
formulations.

This is a difficult context in which to seek definitive results and such
seem only possible in a significant sense if rigorous and effective
mathematical formulations which are physically conservative and
fundamentally simple are available. The mathematical difficulties are
apparent when one considers that, while there remain many serious
difficulties in the global theory of non-linear hyperbolic equations
quantum field theory is largely concerned with equations of that sort
in which the dependent variable is not numerically valued, but is a
pseudo-operator in an infinite-dimensional space-not an operator in
the strict sense, not even an unbounded one, but a kind of germ of an
operator.

The simple explication of the van Hove model of a divergent field
given above suggests the application of similar methods to relativistic
interacting fields. This can be done up to a point in a moderately
conservative way. In this chapter we shall show, on the positive side,
that in typical such cases, as e.g. quantum electrodynamics, the inter-
action hamiltonian becomes convergent if a suitable representation of
the canonical variables is used. This refers to the formulation of the
fields in the so-called interaction picture which seems in a way more
closely related to measurement than the so-called Heisenberg picture,
as well as probably closer to the ideas of renormalization in their
simplest form. However, the interaction hamiltonian is then time
dependent so that the question of whether there exists a single repre-
sentation in which, for all times, the interaction hamiltonian is con-
vergent, naturally arises. This is a difficult question but it can at least
be reduced to a certain extent to well-defined mathematical questions
which seem independent of variations in the details of the formulation.
On the other hand, even if it is proved that such a representation exists
or does not exist, i.e. a rigorous type of convergence or divergence is
established, nothing definite can be asserted about the convergence or
divergence of various formulations in terms of the Heisenberg picture.
Roughly speaking, the difficulty seems to be that in field theory one is
trying to describe a non-linear situation (the interacting field) in linear
terms (utilizing either the "bare" field, or the asymptotic free physical
field, both of which are linear); one must consequently expect a good
deal of intricate complication in the results. How this difficulty might
be remedied will be discussed in the next chapter.
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The most basic interactions of field theory, the linear-bilinear inter-
actions between Bose-Einstein and Fermi-Dirac fields, can be de-
scribed in formal terms in various ways, by means of the equations of
motion, in terms of the interaction hamiltonian, etc. None of these
formulations has clear mathematical meaning, and for brevity we deal
here with that in terms of the interaction hamiltonian. In the "inter-
action picture" this "operator" HI(t) is time dependent and has the form

Hi(t) - feix, t).J(x, I)d 3x,

where j(x, t) is a hermitian-bilinear expression in the fermion field
+(x, t)- both + and + satisfy the free field equations here, this being
precisely the formal advantage of the interaction representation. Now
4.(x, ) has no real mathematical meaning, but is the operator-valued
quasi-function similar to that described in Chapter III, i.e. is the
figurative kernel of the linear map f-1. 0(f) - J*(x)f(x)d~x, from
suitable functions f on space-time to the operators on the Bose-
Einstein state vector space. This is quite vague mathematically, but
any more precise rendering would represent a special interpretation of
the situation not incorporated in the generally accepted ideas on the
subject. Of course, to make mathematical progress, a rigorous inter-
pretation must be made, but this naturally involves the danger of
becoming involved in difficult technical questions which may in the end
turn out to be not quite relevant.

To arrive at a conservative mathematical interpretation, let us pro-
ceed to begin with in a formal way. To fix the ideas one may, if
desired, think of + as a photon field + and + as an electron field +,,
in which case J, = t .yq, and HAI) - f (:E, +,j,)d3x. The general
case proceeds along lines which are not, as regards present issues,
significantly different. To say that + is a quantized photon field is
formally equivalent to the possibility of making an expansion of + in
terms of classical photon wave functions with operator coefficients
satisfying the canonical commutation relations, say

4 :(x) ,

k-i

{#} being an orthonormal basis for normalizable solutions of the
Maxwell equations, and the R, being the usual operators whose
mutual commutators are scalars. Similarly, 4# may be expanded in
classical solutions of the Dirac equation:

V(x) ~E S'*(X),
k
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the Sk having scalar anti-commutators. Now the given formal expres-
sion for H, fails to make mathematical sense in the beginning because
of the lack of mathematical meaning for such products as + .,;
this is not at all a quasi-function in the same sense as the + or the 4',
and there is no clear-cut mathematical or physical way known to give
such a product at a particular point a definite meaning. But let us
substitute the expressions for +(x) and +(x) in terms of classical
fields, still proceeding, necessarily, in a formal manner.

It results that

HA:) - R,S*Sk C1k,
ilk

where the constants c,,, have the form

C,,lk = f OI(x)4AX)k(x)d 3x,

or

Hl(t) - I R,N,, N, = Ct1 gk S*Sk.
I Ilk

This is an improvement over the original form for Hl, which was
troublesome because it involved local products of fields, in that the
individual operators R, and N,, and the finite sums Y.•". I R,N,, can be
given effective mathematical meaning, and the divergence of H, resides
only in the lack of an effective limit to the indicated sum, which is a
more familiar kind of divergence. Let us therefore reformulate H1 (t),
as the indicated sum. To insure the finiteness of the coefficients Cej let
us simply "put the system in a box," i.e. consider the space-time
coordinates to be limited in a fixed but arbitrary way, with periodic
boundary conditions imposed; since the box may be made arbitrarily
large, any physical results should be approximable arbitrarily closely
and mathematically the fundamental convergence questions can be
expected to be unaffected by this procedure, which affords a relatively
direct approach to these questions.

The box limitation also suffices to make the operators N, perfectly
good seif-adjoint operators in the Fermi-Dirac free-field state vector
space, although they will appear as divergent in some loose f6rmula-
tions. The point is that such bilinear expressions in fields as N, are
really formally equivalent to the mathematically unexceptionable
object d'(A,), where r' is the representation taking classical field
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motions into quantum field ones, dr is the infinitesimal representation
associated with r, and A, is an honest self-adjoint operator in the
classical underlying Hilbert space. The most familiar case of this is
the expression 14*(x)+(x)d3x for the total number of particles in a
common conventional heuristic approach; more properly it is expressed
as dP(1), 1 being the identity operator. It is not difficult to make
explicit if somewhat tedious computations of the A, in specific instances.
The "dropping of vacuum expectation value terms" which are com-
monly "infinite constants" is not required because in the present
formulation this vacuum expectation value is automatically zero.

Now there is one more formal aspect of the situation that is essential:
the N, are mutually commutative. This follows from a familiar
feature of free-field quantization, the "micro-causality," to the effect
that there is mutual commutativity at equal times, of the Bose-Einstein
"field" values +(x, t) (at different points x), and of the Fermi-Dirac
current j(x, t). These properties, while sometimes presented as postu-
lates, are automatic consequences for free fields of the indicated
covariant quantization rules. Since the N, are linearly dependent on
the j(x, t) for fixed t, they also are mutually commutative, in a formal
way. A rigorous argument can be given for each interaction by com-
putation of the operators A, such that N, = df(AJ, and verification
that the A,, which are well-behaved operators on the underlying
single-particle space .*' for the fermions, are mutually commutative.
For since P is a representation, then for any commuting self-adjoint
operators A and B on .)', it follows from the commutativity of the one
parameter groups e"A and e""( - a < s, t < oo) that the correspond-
ing groups Rel'A) and f(e"") commute, so that their self-adjoint
generators dr(A) and drfB) likewise commute in the strict Hilbert
space sense.

At this point a rigorous definition of H,(t) may be made:
HQt) = •. (R,N•)~,

H It

where the R, are canonical variables on the photon state vector space (in
an as yet unspecified representation), and the N, are the indicated self-
adjoint operators, of the special form d"(A,), on the free electron state
vector space; the symbol - superscribed on an operator indicates its
closure (i.e. the extension of the operator to the maximal domain on
which it naturally operates), which automatically exists in view of the
commuting and self-adjoint character of the R, and the N,; while a
sum of closed operators is defined as having in its domain all vectors
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for which the corresponding series of vectors is convergent and to have
the obvious value on this domain. At this point we have of course no
assurance that there exist any non-zero vectors in this domain.

Having made a rigorous definition of HQ), the real question arises,
of what relevant results can be obtained regarding it, or the associated
field motion. The "finiteness" and "uniqueness" of HQ) are of
course in question, but to see what "finiteness" should mean here, the
role of the interaction hamiltonian in the general theory needs to be
considered. In the first instance, what is empirically relevant is the
so-called S- (or scattering) operator, which gives the total motion due
to the interaction, acting from time - oo to time + oo, relative to the
free motion of the fields without interaction. The matrix element
(Sx, y) of this operator determines the transition probability from the
state represented by the vector x to that represented by the vector y.

The scattering operator is definable in a formal way as that unitary
operator in the representation determined by the physical vacuum,
which induces the automorphism lime... O(t)0o(t) -, of the algebra of
field observables, with the notation used previously, i.e. 0(.) is the one-
parameter group of automorphisms giving the actual temporal de-
velopment of the field (in the "Heisenberg picture"), while 0o(.) gives
the kinematics. The precise existence of this limit is of course open to
question, but not a great deal more so than the rigorous existence of the
transformations O(g). It is not difficult to infer from this definition
together with the definition of H,(t), that formally S is the product
integral from time - oo to + oo, of the exponentials of the Ht) (the
order of the factors from right to left being the temporal order):

S = lim [1 exp [iH:(Ik)XIk+ - tk)],
k-I

the limit being taken as t1 - - oo, t, - + 0o, and maxk Itk+lI -- tk*-'0.

(The variant of this formula in which the exponentials are replaced by
the first two terms in the power series expansion was first explicitly
presented by Dyson. This approach leads to an intricate power series
expansion for S which has finite coefficients only after "renormaliza-
tion"; is very possibly divergent everywhere even after renormaliza-
tion; and seems mathematically unpromising. We deal here only with
the indicated exponentials.) From this formula for S and the com-
mutativity of the fields at equal times in the case of a "local" theory
it is readily inferred that S commutes with all Lorentz transformations,
for a relativistic theory.
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In the preceding formula the Hl(t) were formulated in the repre-
sentation determined by the physicai vacuum, but if we wish only to
obtain the automorphisms representing the field's temporal develop-
ment, the key feature for the HQ(t) is that the indicated exponentials
exp [iHl(tk)tkII+ - 1k)] should exist and be well-defined. This is
implied by, and in the present context is virtually equivalent to, the
H1 (t) being diagonalizable in a unique fashion, or in mathematical
terms, being "essentially self-adjoint." This is much more than re-
quiring that it be densely defined and hermitian, which in turn is much
more than appears to be the case for the interaction hamiltonian in
practice. However, the classical approach implicitly restricts the re-
presentation in which H, is examined to be one in which the free-field
hamiltonian is also finite, a technical requirement by no means
physically indicated, and in fact when the role of the representation is
understood is seen to be rather contrary to the spirit of renormalization.

The question next arises of whether there exists a representation in
which HAO) is essentially self-adjoint. What can be proved is that there
is always a representation of the photon field canonical variables, which
however is dependent on the fermion field variables, for which H,(t) is
essentially self-adjoint. In terms of canonical pairs of photon field
variables P,, QO, P2 , Q2,. " ., HI(t) has the form :E'.. (PkAk + QkBk)',

the Ak and Bk being mutually commutative time-dependent self-adjoinrt
operators which are functions of the fermion field, and so commute
with the P's and Q's. This is the same as the interaction hamiltonian
for the van Hove model discussed earlier, except that the Ak and B,
are not numbers, but operators. As in that case, there will exist
another set of canonical variables P'ý, Q1, P2, Q2," • • which are func-
tions of the given operators (which may be taken in a free-field
representation), and such that the operator lk (PkAk + Qk'B,,) is
essentially self-adjoint. Thus the interaction hamiltonian H,(t) is
finite in this representation in this sense.

This may possibly be a first step in the desired direction, but there
remain a number of serious difficulties. These are notably the time-
dependence of the representation, its possible lack of uniqueness, and
its applicability only to the photon variables. It is not known whether
the time-dependence can be removed, the problem arising from the
circumstance that, of course, the various Ak(t) and Bk(t) will not
commute for different times t. However, the Ak(t) and Bk(t) are smooth
functions of t, and it may fairly plausibly be conjectured that over any
finite t-interval, - T < t < T, there exists a fixed representation in
which all H,(t) are essentially self-adjoint, and that in fact the product
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integral which defines the unitary transformation taking the field at
time - T into that at time T, exists. On the other hand, it is plausible
also that over the infinite interval - oo < t < oo, there exists no such
representation. This latter feature might well not be very distressing
from a primarily physical standpoint, since what is observed corres-
ponds to the case of a very large T rather than to the case T = o. But
there would remain in any event an apparent uniqueness problem. It
is moderately plausible to expect that, in view of the representation
independent results described earlier, as well as the fact that in per-
turbative conventional renormalization theory the representation does
not explicitly intervene, that the final results would be independent of
the representation, as long as it yields a finite unitary transformation
for the implementation of the motion from time - T to time T, and is
reasonably smooth nalytically, but this is far from having been proved.
The problem of demirg with the fermion representation, concerning
which there is at least comparable darkness, is relevant to the particle
interpretation of the final quantum field state vector space.

The foregoing approach to a treatment which may be convergent in
the interaction representation is not only quite speculative, it is much
more complicated and intricate than the simple conceptual ideas
behind quantum electrodynamics would suggest are appropriate at the
foundational level, as appear to be all rigorous approaches which have
been advanced. One might, however, hope that in spite of appearances,
the theory is really convergent in most naive form, in which all the
operators are represented in the free-field representation. As noted
earlier, it is virtually impossible to prove in a mathematically rigorous
way that this cannot be the case, since the possibility of an alternative
formulation that is physically acceptable cannot be rigorously ruled
out. However, the existence of a partial exact solution for the in-
finitesimal motion makes possible a definite mathematical result whose
physical interpretation is fairly inescapable, that the theory is divergent
relative to this comparatively restrictive definition of convergence.

The infinitesimal motion from time t to time t + dt will take a dyna-
mical variable X at time t into the dynamical variable given in a formal
way by the expression

exp [iH,(t)dt] X exp [-iH,(t)dt].

If X is one of the canonical P's or Q's, the foregoing expression is
readily evaluated in closed form, the result being that the following
transformation on the P's and Q's is effected:

Pk - Pk + Bkdt, Qk - Qk - Akdt.
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For any finite numerical value of dt it is a material mathematical
question whether there exists a unitary transformation effecting this
transformation. The theorems cited earlier do not apply directly,
because of the operator rather than scalar character of the Ak and Bk,
but the same methods apply and indicate in fact that no such unitary
operator can exist. Roughly speaking, the Ak and B,, must tend to
zero fairly rapidly for such a transformation to be unitarily imple-
mentable, and they are actually however of roughly the same order of
magnitude for all k. Thereby the possibility of evaluating in closed
form the infinitesimal motion of the photon field, in the interaction
representation, for quantum electrodynamics "in a box," shows the
essential divergence of the latter theory, relative to the most natural
conventional requirements. We are led back to the necessity of
considering a variety of representations for the field variables.

To summarize, it may be said in general terms that the foregoing
approach has yielded quite a small return on a relatively substantial
investment. One might be tempted to try an altogether different
approach. Now approaches may be classified on the basis of the
"picture" they employ-Heisenberg or interaction, to exhaust the
apparently reasonable relativistic possibilities-and on the basis of the
extent to which the figurative operators of the theory are required to
resemble bona fide operators in Hilbert space. The approach indicated
above, for example, used the interaction picture, and more signifi-
cantly, involved a medium level of resemblance to operators; some
but by no means all of the pseudo-operators in the formalism are
assumed to be rigorously representable by operators in the representa-
tion determined by the vacuum state, the other pseudo-operators being
representable as operators in other representations, but not necessarily
in this one. It is natural to ask whether progress can be made by
using instead the Heisenberg picture and assuming the least possible
concerning the figurative operators involved.

Perhaps the simplest approach along these lines is that based on the
vacuum expectation values of simple products of (Heisenberg) field
operators. While the so-called "time-ordered" product expectation
values are closer to practice in renormalization theory, they present a
more complicated mathematical problem. One may start from the
notion that although the interacting field operator +(x) does not exist
as a mathematical operator, nor possibly even the suitably averaged-out
field f4+(x)f(x)djx, with smooth weight function f vanishing outside a
sphere, nevertheless, the vacuum expectation values of products of the
latter pseudo-operators may have a precise mathematical meaning; it
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is arguable that these vacuum expectation values are relatively close to
measurement. At any rate, in conventional theory, these vacuum
expectation values appear as finite after renormalization, although
originally divergent; these preliminary infinities might give one pause,
but represent almost a positive virtue within the framework of re-
normalization philosophy for it is presumably the renormalized fields
which are physical, and hence finite, while the unrenormalized, "bare"
fields are considered virtual objects which might well be infinite from a
real physical viewpoint and whose intrusion into the theory one
would like to minimize. The "bare" fields are needed at the present
time if one wants to construct a specific theory like quantum electro-
dynamics, but it seems natural to undertake to develop methods for
going as far as possible with the use of the more physical renormalized
fields.

There are, however, a number of foundational difficulties with this
general approach. In order to arrive at non-negative transition
probabilities, it is necessary to assume that the vacuum expectation
values satisfy positive definiteness conditions, such as are automatically
satisfied if they are actually expectation values of operators. These
expectation values are in fact quite analogous to the moments of a
probability distribution (albeit in an infinite-dimensional space and
with non-commuting random variables), and the an•alogues to familiar
non-negativity requirements on certain functions of these moments
must hold. Unfortunately, it is not known whether these positive
definiteness conditions continue to hold after renormalization. In the
absence of any direct formal argument to this effect, it would provide
some reassurance to know that it holds in perturbation theory in some
non-trivial special case, but as yet there is no result in this direction,
as is not so surprising, the computations involved being quite formid-
able. On the whole, however, some skepticism regarding the positive
definiteness of the vacuum expectation values of the renormalized
fields, in quantum electrodynamics for example, seems justified.

On the other hand, it may be argued in a semi-empirical way that the
positive definiteness conditions must be satisfied, inasmuch as real
transition probabilities are non-negative. However, if this is the case,
then the vacuum expectation values make it possible to set up a Hilbert
space, and a concrete representation of the field operators on this
Hilbert space along lines similar to those indicated above for a state
(expectation value functional) on a C*-algebra. The Lorentz-invari-
ance of the vacuum expectation values would lead to a unitary
representation of the Lorentz group on this Hilbert space, etc. If one
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begins to assume that the resulting field operators have reasonable
regularity properties, e.g. that f.+(x)f(x)d~x is represented by an
essentially self-adjoint operator, then one has not gained much by
concentrating on vacuum expectation value functionals rather than
operators. Such regularity properties are required in any event for
uniqueness of the probability distributions for the pseudo-observables
of the theory.

It is also mathematically entirely possible to have a well-defined
regular state in which the vacuum expectation values of products of
field operators are infinite. Another possibility is that the vacuum
expectation values of the products are all finite, but fail to uniquely
determine the state, just as the moments of a distribution do not
necessarily uniquely determine the distribution. Still another difficulty
could arise with finite vacuum expectation values for products of field
operators determining a unique regular state, which, however, fail to
satisfy the stringent continuity requirements on these values as func-
tions of the weight functions f, which are involved in the-effective
analytical development of the theory-as happens even in the case of
certain free fields of vanishing mass.

There are many other formulations which might be considered,
some of which have been intensively developed, but the foregoing
should give a fair idea of the complex and novel mathematical problems
present, in rather varying respects, in all of them. These problems do
not represent grounds for undue pessimism, and we believe that the
representation-independent operator-theoretic approach indicated
above is relatively promising, but it is unrealistic to anticipate a simple
solution to the problem of formulating conventional quantum electro-
dynamics, say, in a rigorous mathematical manner in the near future.
In fact, there may never be a conceptually simple and rigorous way of
treating conventional quantum field theory, for this involves analyzing
the states of the field in terms of the states of a free field, which is
physically somewhat mythical, especially from the point of view of
renormalization theory. Easy empirical applicability results from the
way in which "free physical particles" may be brought into the theory,
but not only may logical consistency be sacrified thereby, conceivably
the possibility of a fundamentally simple and rigorous mathematical
theory may be eliminated by what may be, from the point of view of
empirically applied mathematics, a brilliant approximation. In the
next chapter we shall briefly indicate an approach to the theory of
interacting fields which is more intrinsic-independent of any ad
hoc linear reference system, or Lagrangian, or hamiltonian-and
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apparently more conceptually satisfactory, although much further from
dealing in an effective computational way at this time with real
empirical effects.

References to Chapter VII

A number of books on renormalized quantum electrodynamics are
available among which we cite that of KAII~n (1958) for an account
emphasizing the Heisenberg picture and that of Jauch and Rohrlich
(1955) for an account emphasizing the interaction picture.

Concerning vacuum expectation values of products of fields, see
especially Wightman (1956) and later articles by the same author.

The theorem quoted concerning the finiteness of linear forms in
canonical Bose-Einstein field variables, in a suitable representation, is
proved by Segal (1960a).



CHAVPMR VIII

New Approaches and Problems

As indicated earlier, none of the existing approaches to a rationaliza-
tion and rigorization of conventional quantum field theory has yet
progressed to a point within sight of comprehensive definitive results;
and even if such progress were at hand, there would remain an un-
satisfactory element in the dependence of the theory on an ad hoc
linear reference frame. To arrive at a way of treating in an intrinsic
fashion the quantization of a non-linear systcm, it seems reasonable to
begin with the analogous finite-dimensional problem (which was
mentioned earlier in these chapters). Further, since our primary
aim is a new formalism, it is reasonable to proceed initially in a
partially heuristic way, from a mathematical standpoint, if this
appears to promote succinctness and clarity for the essential formal
elements.

Let then .Y' denote a finite-dimensional smooth manifold which is the
configuration space of some system. When Y' is a linear vector space
Y.9, it may be quantized by forming the phase space .4f = Y (D Y*,
on which there will be canonically defined, as noted earlier, a skew
form B. There then exists an essentially unique map -* R(z) from
4 to the self-adjoint operators in some Hilbert space, which is suitably
linear, and such that the Weyl relations, which in their infinitesimal
form assert that

[R(z), R(z')] - iB(z, z'),

are satisfied, for arbitrary elements z and z' of .A. The. analogous
object to M' for a general manifold is the so-called cotangent bundle,
which consists of all pairs (q, p), where q is a point of .Y' and p is in the
dual to the tangent space to Y. at p (i.e. a so-called covector). Denoting
this space by .4, there will be in place of the distinguished skew-

S symmetric bilinear form B for the linear case, a skew-symmetric bilinear
form £2: in the tangent vectors to M at the point z. This form, as a
function of z, is but one way of specifying a second-order differential

97
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form D on M, which may in fact be given by the classical formula

D) = 2 dpkdqk,,
k

where the q, , q. are arbitrary local coordinates at a point of Y,
and pl, - ", p. are the corresponding covector coordinates.

Now D cannot be used in quite as simple a fashion as B in the linear
case to set up commutation relations. The generalized canonical
variables entering into such relations should on the one hand relate to
the form D, and on the other specialize in the linear case to essentially
the usual variables. It is natural to bring in in place of the vector z in
the linear phase space a vector field on tht general phase space-., for
these relate to D in somewhat the same manner as the z's relate to B,
and the vector z determines a vector field in a canonical way, namely
that generating displacement through a vector proportional to z.
Such are of course extremely special vector fields so that it might appear
that associating a canonical variable with a general vector field would
lead to an excess of such variables, but it turns out in the end that we
get no more than are appropriate.

The vector fields Z on .4' will generally not commute, unlike the trans-
lations in a linear space, so that some additional complication such as
that represented by a further term in the commutation relations might
be anticipated. In this way one is led to the generalized commutation
relations

- i[R(Z),R(Z')] = (Z,Z') + R([Z,Z']).

It may be seen that these extend not only the defining relations for
R(z) for the case when .YP is a linear space but also the commutation
relations between the usual angular momenta, linear momenta, and
position coordinates in quantum mechanics, constituting in fact a
formulation of all such relations invariant under all classical contact
transformations.

Such a transformation T on the phase space W' is one leaving in-
variant the fundamental form 9. It will naturally leave invariant also
every power of D, in particular 9" for n equal to the dimension of S.
In classical terms, this form may be expressed by the equation

9n" = I-ldPk dqk,
k

so it follows that any contact transformation leaves invariant this
element of measure on .,#. It follows that the corresponding trans-
formation on the Hilbert space *' = L2(M, 9") of all square-integrable
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functions on .0 with respect to this measure,

f(z) -'.f(T- 1z),

is unitary, an observation first made by Kgopman, and exploited by
him and others in connection with classical mechanics. The space Jr

is useful at this point primarily in affording a convenient representa-
tion for the generalized canonical commutation relations just described.
Specifically, let w denote the differential form ":k p dq, on .4', an in-
variant under general transformations on .Y', or rather, their canonically
induced action on . of. Evidently, the covariant differential dw is the
original form D, in the sense of the theory of exterior differential forms,
and setting

R(X)= -iX + W(X),

it is straightforward to verify that the generalized commutation rela-
tions are satisfied and that R(X) is hermitian when X is an infinitesimal
contact transformation.

It can now be observed that it does not matter that the space.# and
form 0 are associated with a configuration space Y/'. The foregoing
quantization depends only on the phase space structure. If there is
given only a manifold. # representing the phase space of some physical
system, without any special labelling of the local coordinates as
"spatial" on the one hand or "momentum-like" on the other, to-
gether with a distinguished non-degenerate second-order differential
form Q on.#, which is closed: df2 = 0, then similar commutation re-
lations may be set up without inconsistency. In case .# is simply-
connected, there will exist a form w on .# such that Q = dw, and a
construction entirely similar to that above is possible. The resulting
set of canonical variables is essentially unique, different choices for ,)
giving rise to unitarily equivalent constructions. The expendability in
this connection of an actual configuration space .Y is noteworthy
because in a relativistic field theory there is no fully covariant way to
distinguish the p's from the q's, or to regard the phase space as the
cotangent bundle of some distinguished manifold .Y'; a useful non-
relativistic Y/' may be defined, but the full Lorentz group will not act
on .9'.

The case of an infinite-dimensional manifold .# of the type that
occurs in quantum field theory is the one of real concern here; let us
consider now the adaptation of the foregoing approach to the quantiza-
tion problem for such a manifold. The simplest representative case is
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apparently the manifold .4 of all solutions of a Lorentz-invariant
partial differential equation such as

where F is a smooth function of a real variable such that F(O) = 0 and
FP(A) ; 0 for all real values of A, the unknown function 0 being real-
valued. (The last condition replaces the reality of the mass in the
Klein-Gordon equation.) The manifold -# of all solutions 0 of this
differential equation is, as a point set, not a particularly accessible
object at the present stage of development of the global theory of
non-linear partial differential equations, but the point set aspect is
secondary. Primarily, in relation to quantization, -0 is important as
a variety of measure space on which the Lorentz group acts, as is the
Hilbert space for the renormalized Schrodinger representation, and like
the Hilbert space, may contain sets which are large by topological
standards, but are effectively of measure zero, and do not affect the
quantization. Further, despite the relative inaccessibility of at, its
tangent manifolds are defined by simple linear partial differential
equations: the tangent space at a point 0 may be parametrized by
functions ,? satisfying the first-order variation of the given equation:

1 n7 = F(,j.

This is a linear hyperbolic equation with constant principal part, and
despite relevant gaps in the global spectral theory for such equations,
there are a good many recent results and methods pertinent to them.
One way to look at the manifold .1' is to observe that the indicated
tangent plane T. may be defined by the foregoing equation for an
arbitrary 0, whether a solution of the given non-linear equation or not;
. 4 may then be regarded as a maximal integral manifold in general
function space of the elements of contact given by the correspondence

T,-- T., namely that passing through the point 0 = 0. The usual
integrability conditions are automatically satisfied by virtue of the
manner of construction of the elements of contact. In any event, while
the analytical difficulties involved in the construction of .4W must not
be minimized, the problem seems quite an approachable one.

The application of the method indicated earlier for finite-dimensional
manifolds to the present infinite-dimensional one depends on associat-
ing with .' a suitable form -2 (i.e. imposing on .0 a so-called dis-
tinguished "'symplectic" structure). The fundamental differential
form £ may in fact be defined in the following way. First, the "com-
mutator function" D.(x, x') at the point 0 of _W may be defined as that
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solution of the hyperbolic equation

[] D(x) = F'(O)D,

which has the Cauchy data

D(x, x') 0, T- D,(x, x') =( - x').

Next, to avoid delicate and secondary real variable questions, let the
tangent plane T# at 0, which was set up originally as the null space of
the linear operator [] - F'() be formulated rather as the quotient
space modulo the range of this operator, considered, for definiteness,
as acting on the space of infinitely differentiable functions of compact
support. In view of the hermitian character of the operator in ques-
tion, these two spaces are formally identifiable. For simplicity, , and
F may also be assumed infinitely differentiable. If I and r'7 are any
two tangent vectors, let f and f be any representatives in the residue
classes defining them, and define

WTI, ,7) = f fJDO(x. x')f(x)f(x') dx dx',

giving the differential form Q on A'. (Alternatively, we may consider
only tangent vectors 7• of the form

0(x) = f D•,(x, x')f(x') d4x'.

and use the same definition for Q4.)
That Q7 is closed can be derived by a formal argument. It is then

reasonable to assume that canonical variables satisfying the indicated
commutation relations exist. A formal quantum field , satisfying the
conventional commutation relations can then be defined in the
following way. For any smooth function f on space-time, let X, be
the vector field on . ' which assigns at any point , of .-0 the tangent
vector in the residue class (modulo the range of n - F'(0)) determined
by f. Since Xf depends linearly on f, and R(X) depends linearly on
X, R(Xf) depends linearly on!f and so is formally expressible as

R(Xf) -f (x)f(x)d4 X

for some operator-valued pseudo-function +. The commutation rela-
tions for the R(X) given above then carry corresponding implications
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for the 4(x), and it may be seen in this way that in particular the follow-
ing relations are satisfied:

[4(x), +(x')] = 0, x),(x - x') for xo = xO.

Thus the operator field Ox) satisfies the conventional canonical com-
mutation relations, and being canonically derived from the classical
equations of motion, is reasonably definable as the quantized field
associated with the classical system defined by the given partial
differential equation.

The basic algebra of operators is thereby formally established. The
question next arises of the determination of the vacuum state. It is
reasonable, physically and mathematically, to define this as a regular
Lorentz-invariant state (in the sense of expectation value functional),
in the representation determined by which the energy is non-negative.
It is plausible, as is known rigorously in the case of free fields, that the
vacuum is then unique. The vacuum state then determines a repre-
sentation for the generalized canonical variables R(Xf) with a vacuum
state representative as cyclic vector, as well as a unitary representation
of the Lorentz group, on a Hilbert space .;r, the space of physical
quantum field state vectors. There is a price to be paid for this
formalism-it is difficult to make a simple particle interpretation for
the states of .;'. But the general ambiguity in the physical notion of
particle indicates that this is just as it should be. The existence of a
simple particle interpretation for all the states of a quantum field must
be expected to be quite a special property of the interacting field
equations, and there are in fact formal possibilities in this direction for
suitable equations.

The foregoing was intended to sketch a possible framework for
quantum field theory which avoids the conventional dependence on a
linear reference system, and at the same time is free of the conventional
divergences, at least as long as a particle interpretation of the quantum
field is not enforced. It was intended at the same time to illustrate how
modern mathematical ideas may be brought to bear on theoretical
physical problems, as well as how mathematical problems can grow
out of general physical considerations. It is clear that to follow up
mathematically the heuristic developments indicated requires the
parallel development of the global theory of non-linear hyperbolic
equations on the one hand, and analysis and aspects of differential
geometry on infinite-dimensional smooth symplectic manifolds on the
other. Further thought leads to relatively specific problems along
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these lines. Among these may be cited the Cauchy problem with
covariant (time-dependent) data at infinity for variable coefficient and
non-linear hyperbolic equations, in the realm of partial differential
equations, and that of the generalization of the basic theorem for
finite-dimensional manifolds on the existence of manifolds with
prescribed elements of contact, in the light of spectral theory in
Hilbert space, in the realm of analytical differential geometry in
infinite-dimensional manifolds. Also relevant although less obviously
so are the global analytical properties of non-linear transformations in
Hilbert space. The cited Cauchy problem provides a canonical formal
coordinatization of .W by the tangent plane Tr at the vanishing field.

We shall conclude by discussing quite a different sort of problem,
which likewise illustrates the interplay between mathematics and
theoretical physics, and is of fundamental importance for modern
physics. The problem of quantum field theory is primarily one of
meaning, especially of a mathematical sort; there is as yet no rigorous
proof that renormalization is not in essence some extremely sophis-
ticated variety of witchcraft. But despite this problem of meaning, of
the product of local fields in the mathematical and physical senses, etc.,
the numbers produced fit very nicely with experiment. The general
situation is the reverse in the theory of the classification of free ele-
mentary particles. It is fairly well understood in a theoretical way how
particles may be classified in relation to a given symmetry group, and
there are no serious convergence questions or problems of mathe-
matical meaning. But the classification schemes produced theoreti-
cally have very limited power for empirical prediction, and tend to be
quite short-lived. In a formal way, the discussion up to this point
treated the quantization of a given non-linear manifold .4f; the ques-
tion now is, what can be said about this manifold, specifically, about
the structure of the tangent space to it at the point representing the
vanishing field (or more generally, the presumably unique point left
invariant by the fundamental symmetry group)? This tangent space
can be regarded as the space of wave functions for the free quanta of
the theory, whose interaction is determined by the differential-
geometric structure of.#.

Although ever since the foundation of modern quantum theory
around 1925, leading physicists, such as Niels Bohr, have emphasized
the need for radically new notions of space and time, insofar as micro-
phenomena are concerned, virtually all highly developed classification
schemes for particles or for reduction of experimental data have been
based on Minkowski space, and the action of the Lorentz group or
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even in some cases on non-relativistic models, up to the present time.
The time would appear to be much more than ripe for the development
of more imaginative, sophisticated, and rational, theoretical schemes
for classification. There are, however, two notable difficulties about
this. First of all it is obvious that only a quite comprehensive and
detailed scheme, with an accompanying clearcut physical interpreta-
tion has any chance of dealing with the complicated phenomena that
have been observed. Secondly, at first glance it might appear that one
might suffer from an embarrassment of riches in the way of possible
classification schemes. But a closer look at the situation indicates that
these difficulties may not be so substantial.

The two most fundamental advances in mechanics since the time of
Newton may both be formulated as cases in which a certain Lie
algebra of mechanical significance is replaced by a less degenerate
algebra. The passage from classical mechanics to quantum mechanics
involved above all the introduction of the relation (p, q] = - ib, which
as h - 0 degenerates into the commutativity characteristic of classical
mechanics. Similarly relativistic mechanics passes into non-relativistic
mechanics as c -- oo, corresponding to the degeneration of the Lorentz
group into the Galilean group. In precise mathematical terms what
happens is that the constants of structure of the Lie algebra of the
Lorentz group, which are c-dependent, converge as c -* oo to those of
the Galilean group. It is natural to inquire as to whether it is possible
for the basic variables of the conventional relativistic theory to be a
degenerate form of those of a more accurate and effective theory, and
if so, what possibilities there may be.

The basic variables of the standard relativistic theory are 14 in
number: the linear momenta and energy, PO, P1, P2, P3; the angular
momenta, In1 , i1 2, M3 ; the space-time coordinates x0, x 1, x 2, x3 ; and
the parasitic but unavoidable Lorentz momenta, non-measurable in
view of their lack of commutation with the energy, but needed for a
covariant theory. The commutation relations of the generators of the
Lorentz group are well known, while those of the x, with these genera-
tors are implicit in the usage, which requires that any Lorentz
transformation transforms the x, in an inhomogeneous linear style.
To arrive at a Lie algebra the identity I must be included, as it arises
from the commutator of p, with xk, and all together a 15-dimensional
algebra is obtained. Now one difficulty of long standing in the standard
relativistic theory has been the lack of any bona fide coordinate
operators for the standard relativistic particles-the photon, electron,
etc. Many authors have examined this question but no fully covariant
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set of coordinate operators has been found, and it can in fact be proved
that there do not exist commuting self-adjoint operators x0, x1 , x2, x:
on the Hilbert space of classical wave functions for any of these
particles, which transform in the required fashion under the action of
the Lorentz group; or what is equivalent, the standard irreducible
unitary representations of the Lorentz group cannot be extended to
unitary representations of the 15-dimensional group whose Lie
algebra was cited above, without enlargement of the representation
space. There are actually many other difficulties with the standard
spaces of relativistic wave functions as models for free particles.

Now there exist actually many Lie algebras of which the standard
relativistic one is a degenerate form, and three are known in fact which
are terminal, in the sense that they are not themselves degenerate forms
of any other Lie algebras. These are the Lie algebras of the non-
compact real pseudo-orthogonal groups in six variables. There are
also well-defined representations of these groups which degenerate into
the familiar representations of the Lorentz group discussed above.
Associated models have certain empirically suggested qualitative
features, and also provide a notably economical possible means of
integrating the so-called " internal " and "external" degrees of freedom
of particles. A number of current essentially conventional models
simply adjoin to the Lorentz group, as the symmetry group relevant
to the external degrees of freedom, a separate "internal" group,
variously of three and six dimensions, the total effective symmetry
group being the direct product group and having so large a dimension
as to render a conclusive experimental test of its possible validity
extremely difficult. Despite the relative economy of the 15-dimensional
groups described, which are roughly of the right size to provide with a
small leeway for the "constants of motion" which have been estab-
lished experimentally, the greatest difficulty with the associated
models may well be that the existing data cannot differentiate between
them, rather than that they fail to fit the data.

While these groups and certain four-dimensional spaces on which
they act seem particularly worth investigating from the point of view
indicated, many other symmetry groups and associated representations
and physical interpretations may be conceived of. It seems safe to say
that a total symmetry group of dimension less than 10 is likely to be
much too restrictive to serve as a basis for the description of the known
particles, while one of dimension greater than 20 could probably not
be conclusively established on the basis of the kind of data about the
particles likely to be available in the foreseeable future; but there is
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little beyond this that is both safe and simple. In any event, after a
tentative fundamental symmetry group (or, equivalently, Lie algebra)
has been selected, the main steps involved in formulating a specific
physical theory of elementary particles may be outlined briefly as
follows.

First, certain linear representations of the group must be specified
and connected with designated elementary particles (where "ele-
mentary" does not necessarily have any absolute meaning, but refers
only to its empirically observed physical role). Second, a maximal
abelian diagonalizable subalgebra of the group algebra must be de-
signated; the spectral values for the elements of the subalgebra give
the so-called "quantum numbers" for the particles in question.
Usually it is the infinitesimal group algebra, or so-called enveloping
algebra of the Lie algebra, which is employed, after augmentation by
the quite limited subgroup of elements in the absolute center of the
group, involving only one non-trivial element in the relativistic case,
which specifies whether the spin is integral or half integral. Thirdly,
these quantum numbers must be connected with experimentally
measurable quantities, which involves incidentally the construction of
a dictionary between the quantum numbers and conventional ones
employed in connection with the standard relativistic theory as aug-
mented by various internal quantum numbers, such as strangeness,
baryon number, etc.

Thus it is a long road to the formulation of a complete theory, but
it is a finite one. When it is finished it may be checked with experiment.
Despite the large number of conceivable models, there are relatively
few of outstanding economy and other desirable qualitative features.
The development of any such models is a rather substantial undertak-
ing, but it seems as sensible to make a controlled, physically conserva-
tive (if theoretically imaginative) attempt such as very briefly indicated
as to pursue further variations on classification schemes via the
Lorentz group and various uncertain "internal" symmetry groups.

Even from a purely mathematical point of view, the determination
of the relevant representation theory of the groups mentioned, and the
establishment of an effective theory of the convergence of group
representations, is an interesting challenge.

On the other hand, there is a definite risk in any attempt at dealing
with the classification of free particles, that the interaction effects are
conceivably so great as to completely dominate the empirical masses,
coupling constants, etc. The theory may be so strongly non-linear that
no linear approximation to it has any recognizable connection with
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experiment. This is true just as it is true that if the sun had been of
small mass, we would never have heard of Kepler. But it does not
look particularly likely, in view of the excellent description of the
kinematics of the best known particles provided by linear equations
such as the Maxwell and Dirac equations over a rather wide energy
range.

References to Chapter VIII

The indicated approach to the quantization of non-linear partial
differential equations is due to Segal (1960b). The general theory of
linear hyperbolic partial differential equations has been treated at length
by Leray (1953). Relatively simple conditions for the absolute con-
tinuity of a transformation in Hilbert space have been obtained by
Gross (1960). Degeneration of one Lie algebra into an inequivalent
one, in relation to the classification of elementary particles, has been
considered by Segal (1951, 1959a). Recently K. Jorgens (1961) has
treated the global Cauchy problem for a class of non-linear relativistic
partial differential equations.
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APPENDIX

Group Representations in Hilbert Space

By G. W. MACKEY

1. Introduction. Though this appendix will be mainly of a purely
mathematical character we shall begin with an attempt to explain
one aspect of the general relevance of the theory of group repre-
sentations for quantum mechanics.

Let S.be a set whose elements have been put into one-to-one corres-
pondence with the "states" of a physical system. Here we suppose
that "state" has been defined in such a way that the state of the system
at time t > t, is uniquely determined by the state at time to and the
relevant physical law. Let U,(s) denote the state at time t when the
state at time 0 is s. Then the state at time t, + ta is U1, (U12(s)) and
is also U1 , - 2(S). Thus we have the identity Uq1 . , = U, U,, for the
transformations U,. If we assume that our system is "invertible" in
the sense that each U, maps S onto all of S in a one-to-one manner
then we may define U-, = U" ' and U0 as the identity and obtain a
homomorphism of the additive group R of the real line into the group
P. of all permutations of S. The set S, of course, is always a great deal
more than an abstract set. It generally has a topology and other
structure as well and this structure is preserved by the U,. Thus
t --* U, is actually a homomorphism of R into the suitably defined
group A, of all "automorphisms" of S. Insofar as states are described
by the rectangular coordinates of points in space and their time deri-
vatives any rigid motion in space will define a permutation V. of S
which will in general belong to A,. Clearly V.,18 = V., V, 2 and we
have a homomorphism a -- V. of the group G of all rigid motions of
space into A,. Many systems of importance are spatially homogeneous
in the sense that V,!U1 = U V. for all t and a. For such we have a
homomorphism of the direct product R x G into A,. For an important
subclass of the spatially homogeneous systems the homomorphism
(t, a) -• V, U, of R x G into A, may be extended to a homomorphism of
a larger group of permutations of space time into A.. For the so-called
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relativistically invariant systems the domain of the homomorphism
may be extended to include the whole inhomogeneous Lorentz
group.

In short for many physical systems one has a natural homomorphism
of some group GO of space time transformations into the group A, of
all automorphisms of the set S of states.

An important structural property of the S for a classical mechanical
system (the so-called phase space of the system) is that there is a natural
way of assigning an "observable" or "dynamical variable" to each
homomorphism of R into A,. Thus in particular every one-parameter
subgroup of GO is correlated with a certain observable and the observ-
ables arising in this way play a central role in the theory. For example
the one-parameter group of translations in time corresponds to the
total energy and the one-parameter group of spatial translations in a
given direction corresponds to the total linear momentum in that
direction. This property persists in quantum mechanics where S is the
set of all one-dimensional subspaces of a Hilbert space H, and so we
have a natural way of extending the notions of energy and momentum
from classical to quantum mechanics.

In the quantum mechanical case the automorphisms of S are the
permutations of the one-dimensional subspaces of H, which preserve
linear independence and orthogonality. It can be shown that every
such can be implemented either by a unitary map of H, on H, or by an
"anti-unitary" map of H, on H, (an anti-unitary map is a norm pre-
serving map V of H, onto H, which is linear with respect to real scalars
and such that V(iqp) = - i V(9) for all 9 in H,). For all complex c with
Icl = I it is obvious that c V and V define the same permutation of the
one-dimensional subspaces of H, and hence the same member of A,.
On the other hand it can be shown that this is the extent of the am-
biguity. Except for an arbitrary factor cV is uniquely determined by
the corresponding member of A,. Choosing this factor arbitrarily for
each aEG° we get from our homomorphisms of Go into A. a mapping
W, " -- Wa of Go onto the group U'(H,) of all unitary and anti-unitary
operators mapping H, on H,. Since W r2 and W., W, 2 define the
same member of A, we have W,,,,2 = a(al, a2) Wl W. 2 where
oGa, a2) is a complex number of modulus one. If the W. were all
unitary and a(a,, a,) were identically one a - W. would be what is
known as a unitary representation of GO. When a is not identically one
we have a unitary ray or projective representation with multiplier a.
Since Wa,. 2 = W, W,. is unitary whether W., and W., are unitary
or anti-unitary, it is often possible to prove that no anti-unitaries can
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arise. In any event we can get rid of anti-unitaries by considering only
a certain subgroup of G° of index 2. Supposing this done we have
associated with every GO invariant physical system a certain unitary ray
representation of GO. Any classification of such representations yields
a classification of GO invariant physical systems and this classification
turns out to be significant. In particular when Go includes the transla-
tions in space and time one can read off from this representation the
form of the energy and momentum operators and the functional re-
lationship between energy and momentum. When Go includes spatial
rotations one obtains information about angular momentum and

"spin."
We shall devote the rest of this chapter and the next to an account of

a general method for classifying the unitary representations of a class
of groups which includes some of those of greatest physical interest.
Though this method applies to projective representations we shall, for
simplicity's sake, consider only ordinary representations in detail. As
an application we shall obtain Wigner's classification of the representa-
tions of the inhomogeneous Lorentz group and sketch briefly its
significance for the classification of elementary particles.

2. Notation and ftmdamental concepts. We shall deal with groups
G which are separable and locally compact in some topology with re-
spect to which the group operations are continuous. Every such
group G admits a non-trivial measure f, defined on all Borel sets and
invariant under right translations. This measure is unique up to a
multiplicative constant and is called the Haar measure of the
group.

Generally speaking a representation of a group is a homomorphism
x -- L, of that group into the group of all non-singular linear trans-
formations of some vector space. We shall deal only with representa-
tions in which the non-singular linear transformations L, are unitary
transformations in some separable Hilbert space H(L) and the mapping
x - ,L, is strongly continuous in the sense that L,(9) is a continuous
function of x for all qp in H(L). It is useful to note that strong con-
tinuity is implied by the superficially much weaker property of weak
measurability: (L,(,), #) is measurable as a function of x for all T and
€ in H(L). Since we shall deal exclusively with strongly continuous
unitary representations, there will be no ambiguity in referring to them
simply as representations.

Let LV, L L2 V, -be a finite or infinite sequence of representations
of G. We define a new representation L = OT LV @ ... known as the
direct sum of the LV by taking H(L) to be the direct sum H(L1) D H(L2 )
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... and defining L,(, 1, 972, ) as L•(9 1), LX(ro 2), .... If L and M
are two representations of G we define an intertwining operator for L
and M as a bounded linear transformation T from H(L) to H(M) such
that TL, = MT for all x E G. The set of all intertwining operators
for L and M is a vector space which we shall denote by R(L, M). If
R (L, M) contains a unitary operator V mapping H(L) on H(M), then
we may rewrite the defining identity as M, = VLz V- '. Clearly the re-
presentations L and M do not differ in any essential respect and two
representations so related are said to be equivalent. It is usually not
necessary to distinguish between equivalent representations: When
L = M, then R (L, M) = R(L, L) is a ring of operators called the com-
muting ring of L. If H(L) contains a closed subspace H' which is
mapped into itself by all L,, then the projection on H' is in R(L, L)
and conversely. Moreover H', the orthogonal complement of H(L),
will also be mapped into itself by all L, and L will be equivalent to the
direct sum of its restriction to H' and its restriction to H'. These two
restrictions are called subrepresentations of L. When H(L) contains no
non-trivial closed invariant subspaces (or equivalently when L is not
equivalent to the direct sum of two non-zero representations) we say
that L is irreducible. It is not difficult to show that L is irreducible if
and only if R(L, L) contains only multiples of the identity. Let T be any
non-zero member of R(L, M). Let H, denote the orthogonal comple-
ment of the null space of T and let H2 denote the closure of the range of
T. Then a modern form of a celebrated lemma of Schur asserts that H,
and H2 are invariant subspaces of H(L) and H(M) and define equivalent
subrepresentations of L and M. It follows in particular that R(L, M)
reduces to the zero element if and only if no subrepresentation of L is
equivalent to any subrepresentation of M. In this event we shall say
that L and M are disjoint representations of G.

3. The decomposability of representations. When G is not only
locally compact but compact it follows from the celebrated Peter-Weyl
theorem that every representation L of G is equivalent to a direct sum
L1 

0 L2 i... where the L' are all irreducible and finite dimensional.
Moreover using Schur's lemma it is not hard to establish the following
uniqueness theorem: If LV () L2 ..' is equivalent to M' I MI...
where the L' and the M' are irreducible, then there exists a permutation
7- of I, 2, • • such that L' is equivalent to M•"1 for all j. Thus if we know
the most general irreducible representation of the compact group G to
within equivalence, we know immediately the most general repre-
sentation. It is uniquely specified by assigning a "multiplicity" =
rL, 0, I, 2,... in an arbitrary manner to each equivalence class of
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irreducible representations. For many compact groups the irreducible
representations are "known" in a very explicit sense. We cite one
example for later use. Let G be the group of all rotations about 0 in
Euclidean 3-space EV. Let S2 denote the surface of the unit sphere in
El and let H denote the Hilbert space of all square-integrable complex
valued functions on S2. For each j = 0, I, 2,. - - the subspace of H de-
fined by restricting homogeneous harmonic polynomials of degreej in
x, y, Z to S2 is 2j + I dimensional and invariant under the action of G.
Thus it defines a representation D1 of G which can be shown to be
irreducible. Moreover every irreducible representation of G can be
shown to be equivalent to a unique D1.

For most non-compact groups it is simply not true that every repre-
sentation is a direct sum of irreducibles and the problem of describing
the most general representation in terms of irreducible ones becomes
much more difficult when it can be solved at all. It is natural to try to
replace the discrete direct sums described above by suitably defined
"continuous direct sums" or "direct integrals." Such a notion was
defined by von Neumann in [10] and applied by Mautner in (9] to prove
that every representation of a separable locally compact G is equivalent
to a direct integral of irreducible representations. Unfortunately
Mautner's decomposition is highly non-unique. On the other hand
for representations which are of "type I " in a sense to be described
below Mautner's decomposition is essentially unique and can be made
to lead to a quite satisfactory reduction of the general problem to that
of finding the irreducible representations. This is especially interesting
in view of the fact that many (but not all) of the groups of interest in
physics can be shown to have only type I representations.

Let L = L1 1,' L 2 ;_ . where the LV are irreducible. It is not
difficult to show that L is "multiplicity free" in the sense that L' and LV
are inequivalent whenever i # j if and only if R(L, L) is commutative.
Now the latter condition makes sense whether L is a direct sum of ir-
reducibles or not and we take it as a definition in the general case. In
other words a general representation L will be said to be multiplicity
free if and only if R(L, L) is commutative. A representation L will be
said to be of type I if it is equivalent to a direct sum LV D L2 ® ...
where each LV is multiplicity free. This definition is equivalent to the
more usual one which stipulates that R(L, L) should be a ring of
type I in the sense of Murray and von Neumann. The problem of
determining all type I representations to within equivalence can be re-
duced to the problem of determining all multiplicity free representations
by means of the following theorem.
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THEOREM*. Let L be any representation of type 1. Then there exists
a sequence L, L1, L2, of disjoint multiplicity free representations
such that L is equivalent to the representation eaL0 0 LV 0 2L2 0 3LD
0D ". The LV are unique to within equivalence. Here nM is an
abbreviation for M 0 M 0 0 • • j M with n terms and some summands
may be missing.

The theory reducing the study of multiplicity free representations to
the study of irreducible ones takes its simplest form when G is com-
mutative and will be described in detail in the next section.

4. Multiplicity free representations of commutative groups. In
classifying the irreducible representations of the groups in which we
shall ultimately be interested we shall need to know something about
much more general representations of commutative groups. It can be
shown that all representations of commutative groups are of type I.
Thus by the theorem of the last section we need only study multiplicity
free representations of these groups. We shall show in this section how
the classical Hahn-Hellinger theory describing the unitary equivalence
classes of self-adjoint operators can be adapted to give a quite complete
and satisfying analysis. It is perhaps not without interest to note that,
via Stone's theorem, the study of representations of the additive group
of the real line is completely equivalent to the study of self-adjoint
operators.

It is an easy consequence of Schur's lemma that an irreducible re-
presentation L of a commutative group is necessarily one-dimensional.
Thus each L, is of the form XL(x)l where I is the identity operator and
x1 is a continuous function from G to the complex numbers of
modulus one such that xL(xy) = XL(x)xL(y) for all x and y in G.
Such functions are called characters of G. Conversely if x is any
character of G and I is the identity in a one-dimensional Hilbert space,
then x --- x(x)l is an irreducible representation LV of G. Moreover
L", and L12 are equivalent if and only if X, and X2 are identical.
Thus determining the equivalence classes of irreducible representations
of G in the commutative case is the same as finding the set (6 of all
characters. This problem is easily solved in familiar cases. For
example, let G be the additive group R,, of all n-tuples of real numbers.
Then for each n-tuple a, a2, • , a. of real numbers we get a character
x by setting x(xI, x2, ' •., x. ) ea'"', + ",'r, and it can be shown that
every character of R, arises in this way from a unique element in R,.

*For references to the literature in which proofs of this and other theorems will be
found see § 12.
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As another example consider the multiplicative group T of all complex
numbers of absolute value I. For each integer n we may define a
character x by setting x(Z) = Z" and it can be shown that every
character of T is of this form.

In general the set 6 of all characters of G is itself a commutative
group. In fact the product of two characters is clearly a character and
this operation obviously converts 6 into a group. Moreover it is not
hard to show that 6 admits a natural topology under which it is locally
compact and separable. 6 is called the group dual to G. The use of
the term "dual" is justified by the Pontrjagin duality theorem which
we shall now state. Note first that if we hold x fixed in G and let x vary
over the members of 6, then X(x) as a function on 6 is a character,
i.e., there exists a unique member F, of d such that F,(X) - x(x).
According to Pontrjagin's theorem, every member of 0 is of the form
F, for a unique x in G and x- - F, sets up an isomorphism between G
and 6 as topological groups. Thus we may identify G with 6 and
think of G and 6 as being in a mutually reciprocal relationship. Be-
cause of this it is customary to write x(x) in the more symmetrical
form (x, x). It can happen (for example if G is finite or a vector group)
that G and 6 are themselves isomorphic but there is hardly ever a
"natural" isomorphism which permits us to identify G and 6.

Now let/u be any measure in the dual 6 of a commutative G which is
completely additive, defined on all Borel sets and a-finite. We define
a representation L1 of G whose space H(L") is Y2(6, p) by setting
(LZ(f))(x) = x(x)f(x). Concerning these representations L" it is
possible to prove the following theorems.

THEOREM 4. 1. Every L" is multiplicity free.

THEOREM 4.2. Every multiplicity free representation of G is equivalent
to some LV.

THEOREM 4.3. Lu and LV are equivalent if and only if ft and v have the
same sets of measure zero.

THEOREM 4.4. Lo and L" are disjoint if and only if u and v are mutually
singular; that is, if and only if there exists a Borel subset N of 0 such
that I(N) = 0 and vY( - N) = 0.

We conclude this section with a few remarks about the analysis of
the possible multiplicity free representations of G provided by these
theorems. It is easy to see that L1 is a direct sum of irreducible re-
presentations if and only if p, is concentrated in a countable set. When
this happens the class of measures having the same null sets as 1A is
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completely described by this countable set which is simply the comple-
ment of the unique largest l null set. In general, however, there is no
largest null set and hence no subset of (6 which describes the class of jA
or the equivalence class of L". It is somewhat illuminating to think of
a measure class; i.e., the set of all measures having a given family of
null sets as a sort of generalized subset of (3.

5. Seml-dlrect products. We shall be interested henceforth in groups
G which admit a non-trivial factorization of the following sort: there
exists a closed normal subgroup N and a second closed subgroup K
(not necessarily normal) such that every XEG may be written uniquely
in the form nk where nEN and kEK. As is easy to see N and K factor G
in this way if and only if NK = G and N f K = e. Let n1k, and n2k2
be two elements of G such that n,1 N and k•eK. Then (nlkj(n2k2) =
nlkinAk 'klk 2 where now nlk~n2k 1I is in N and k 1k2 is in K. From
this it is easy to see that we can reconstruct G once we are given N, K
and the function knk -from N x K to N. Of course for each fixed
k, n --- knk is an automorphism of N and the mapping from K to the
group of automorphisms of N is a homomorphism. Thus the function
in question may be described as a homomorphism from K to the group
of automorphisms of N. Conversely let N and K be any two locally
compact groups such that N is commutative (though commutativity of
N plays no role in the discussion of this section). Let there be given a
homomorphism q of K into the group of automorphisms of N such that
90k)(n) is continuous on N x K. We may convert the set of all pairs
(n, k) in N x K into a locally compact group by giving it the product
topology and defining (n1, k1)(n 2, k 2) as (n1(p(k,)(n2), klk 2). The set of
all n, k with k the identity e will then be a closed normal subgroup iso-
isiorphic to N and the set of all e, k a "complementary factor" iso-
morphic to K. When 9,(k) is the identity for all k we have the ordinary
direct product of N and K. In the general case we shall call the result
the semi-direct product of N and K defined by 9). Usually we shall
suppress the symbol q' and write 9)(k)(n) as k(n).

There are many interesting examples of semi-direct products. The
group of all permutations of three objects is a semi-direct product of
the normal subgroup consisting of (a, b, c), (a, c, b) and the identity
with the subgroup consisting of (ab) and the identity. In this case 9,
takes (ab) into the automorphism which interchanges the two non-
identity elements in N. A less trivial example is the group of all rigid
motions in three space. In this case N is the group of all translations
and K may be taken to be the group of all rotations about some fixed
point. Here 9) takes each rotation into the automorphism of N defined



GROUP REPRESENTATIONS IN HILBERT SPACE 121

by submitting each translation vector to the rotation in question. In
much the same way the inhomogeneous Lorentz group is a semi-direct
product of the four-dimensional vector group of all space time transla-
tions with the homogeneous Lorentz group.

6. The restriction of an irreducible representation to a commutative
normal ubgroup. Our principle concern from now on will be to relate
the irreducible representations of a semi-direct product G = N x . K to
those of N and those of certain subgroups of K. The analysis which
turns out to be possible leads in many cases to a determination of all
the irreducible representations of G. The basic strategy is the follow-
ing. Given any irreducible representation L of G we may obtain a
representation LO of N by considering L, only for x in N. This re-
presentation will usually be reducible and we can ask which reducible
representations of N are of the form V. It turns out to be possible to
give a quite complete answer, especially when certain further conditions
are satisfied, and we are thus led to an important classification of the
irreducible representations of G. The problem remains of studying the
class of all irreducible representations of G having a fixed restriction
to N and this turns out to be equivalent to determining all irreducible
representations of a certain subgroup of K.

Proceeding to details we state the first important fact as a theorem.

THEOREM 6.1. IfL is an irreducible representation of G then the re-
striction L' of L to the closed normal subgroup N is of the form IM where
I = o-, 0, I, 2, • • and M is multiplicity free-in other words LO has
uniformn multiplicity.

It will be convenient to ignore the I for the time being and concen-
trate attention on the multiplicity free representation M. As explained
in §4 every such M defines and is defined by a uniquely determined
measure class in I. Thus every irreducible L of G defines a unique
measure class C1, in N.

In order to discuss the next question: which measure classes in 19 are
of the form Ct. for some irreducible L?--we must first make some
observations about a certain natural action of K on kQ. If a is any
automorphism of N (as a topological group) it induces a natural
automorphism of R. Indeed for each XctQ, n * x(c(n)) is also a
character which we shall denote by [x]a. Clearly x -, [xja is an
automorphism of R. These considerations apply in particular when a
is the automorphism n -- k(n) defined by an element k of K. Thus we
define [Xbk for each x69 and each keK. The set of all [xjk for fixed
x and k taking on all values in K will be called the orbit of X under K
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and will be denoted by 0,. It is clear that two orbits 0,, and 0,2

either coincide or have nothing in common. Thus R is divided up into
disjoint sets.

For each measure !l in IQ and each k in K we get a new measure k(p)
by setting k(1 (E)) = u(E(k)). If p and k(jA) have the same sets of
measure zero for all k we say that 1A is quasi-invariant under K. In
slightly different terminology, jA is quasi-invariant if and only if each
keK carries each member of the measure class of 1A into some other
member of this same class. Now just as each k in K carries each JA into
some other gL it carries each measure class into some other measure
class. From what we have just said it is clear that each keK carries a
measure class into itself if and only if every member of the class is
quasi-invariant under K. Of course, for a given measure class either
every member is quasi-invariant or else no member is.

We shall say that a quasi-invariant measure 1A in R is ergodic if no
measurable subset is invariant under all keK unless it is of measure
zero or has a complement of measure zero. Clearly whether or not U
is ergodic depends only upon the class to which it belongs. Thus we
may speak of an ergodic invariant measure class. We may now state
our second theorem.

THEOREM 6.2. A measure class in R is of the form C, for some
irreducible representation L of G if and only if it is invariant and ergodic
under K.

7. The ergodic invariant measure class defined by an orbit. Theorem
6.2 is of course of dubious usefulness unless a method is available for
finding the possible ergodic invariant measure classes in R. In this
section we shall describe a method which is applicable whenever the
partition of R' defined by the orbits is "sufficiently smooth." In the
general case it can be shown that there is one and only one ergodic
invariant measure class concentrated in each orbit. When the appro-
priate smoothness hypothesis is made it can be shown that every
ergodic measure class is concentrated in some orbit. It follows in this
case then that we have a natural one-to-one correspondence between
orbits and ergodic invariant measure classes.

For each xEIR let H, denote the closed subgroup of K consisting of
all k such that [x]k = x. Then k --* [x]k defines a one-to-one Borel
set preserving map of the space K/H, of all right H, cosets in K onto
the orbit 0, of x. Let 1A be any finite countably additive measure de-
fined on the Borel subsets of K and having the same null sets as Haar
measure. For each Borel subset E of K/H, let ý(E) = ps(i) where E is
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the inverse image of E in K. It is easy to see that ý is quasi-invariant
and ergodic with respect to the natural action (right translation) of K
on K/H1 . Moreover it can be shown that every quasi-invariant measure
in K/HA is in the same measure class with A. Thus there is a unique
invariant measure class in K/H,. Using the one-to-one mapping of
K/H, on t', described above we conclude without difficulty that there
exists a unique ergodic invariant measure class in 0,. Of course an
ergodic invariant measure class in e, is the "same thing" as an ergodic
invariant measure class in 9 which is concentrated in C,.

To see that there may exist ergodic invariant measure classes not
concentrated in any orbit, consider the following example. Let 1Q be
the additive group of all complex numbers, let K be the additive group
of all integers and let q@k) be the automorphism z -,- ze,,a, where a is
some fixed irrational number. For each r > 0 let g,,(E) be the (linear)
Lebesgue measure of the intersection of E with the circle zI -= r. The
measure #,, is invariant under K and is easily shown to be ergodic. On
the other hand all of the orbits are countable and the u, measure of
every countable set is zero. Thus A,, is not concentrated in any orbit.

Whenever such examples exist the problem of determining all
ergodic invariant measure classes is very difficult and is not solved in
any case known to the author. Thus it is fortunate that there is a
simple, often verified, condition which assures us that there are no
such examples.

THEOREM 7. 1. If there exists a Borel subset of N which meets each
orbit in just one point then every ergodic invariant measure class is con-
centrated in some orbit.

The conclusion of Theorem 7.1 is also implied by certain formally
weaker assumptions about the orbits in R. Whenever the conclusion
holds we shall say that G is a regular semi-direct product of N and K.

8. The Irreducible representation of G associated with a fixed orbit.
When G is a regular semi-direct product we have now reduced the
problem of finding all irreducible representations of G to that of finding
all irreducible representations L of G for which CL lies in a fixed orbit
t). We shall see that this problem is equivalent to that of finding all
irreducible representations of a certain subgroup of K; specifically the
subgroup H, where x is any element of C.

In order to make explicit the indicated connection between irre-
ducible representations of H, and G it is convenient to make use of the
notion of "inducing" a representation from a subgroup to the whole
group. Let G be any separable locally compact group and let H be any
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closed subgroup of G. Let is be any member of the unique invariant
measure class in the coset space G/H. Form the Hilbert space
.Yf(GIH, W). If i were actually invariant then each right translation
f(x) -*f(xy) would define a unitary operator U., in this Hilbert space
and y -. U, would be a representation of G. In the general case we
can compensate for non-invariance by multiplying by p,(x), the square
root of the appropriate Radon-Nikodym derivative relating the trans-
lated and untranslated measures. If (U,(f))(x) = p,(y)f(xy) then U,
is unitary and y -- U, is a representation. It is easy to show that
choosing another p replaces U by an equivalent representation. This
construction is the special case of the one we are interested in in which
the inducing representation is the trivial one.

To make the transition to the general case note first that a function
on GIH may be regarded as a function on G which is constant on the
right H cosets; that is, a function fon G which satisfies the identity:
(*) fMx) = f(x)
for all f in H and all x in G. Now let p and p. be as above and suppose
that we are given a representation L of H. If we replace complex
valued functions by functions having values in the Hilbert space
JtV(L) we may consider functions in which the identity (*) is replaced by
(**) f(fx) = Le(f(x)).

If f satisfies (00) then (f.f) satisfies (*) since (f(fx)*f(fx))=
(Lz(f(x). Lf(x)) = (f(x).f(x)). Thus if f is also measurable we may
consider (f(x) f(x)) as a function on G/H and integrate it with respect
to p,. The set of all ffor which this iitegral is finite is a Hilbert space
with the integral as the square of the norm. For each fin this Hilbert
space and each y in G let (Ulf)(x) = p2(y)f(xy) just as above. It is
clear that each UL is unitary and it can be shown that y -* U1 is a
representation of G. To within equivalence this representation, UL, is
independent of 1 and depends only upon L. We call it the representa-
tion of G induced by the representation L of H. In general UL will not
be irreducible even if L is. However, in certain important cases UL is
irreducible and formation of the UL for suitable subgroups H is one of
the chief ways of constructing the irreducible representations of
non-commutative non-compact groups.

Returning to our problem, let x be any element of J9. Form the
subgroup NH, of G consisting of all products nk with n in N and k in
H,. For each irreducible representation L of H, the correspondence
nk - x(n)Lk is easily seen to be a representation of NH,. Let us
denote it by xL and form the induced representation UXL of G.
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THEOREM 8.1. For every irreducible representation L of H, the in-
duced representation U11 of G is irreducible. The restriction of UxL to
N has its measure class concentrated in C., the orbit of x. Every irre-
ducible representation of G associated with the orbit 19 is of the form UIL
where L is unique to within equivalence.

9. Some simple examples. When G is the permutation group on
three objects a, b, and c, i9 is a cyclic group of order 3 and the non-
identity element of K interchanges the two non-identity elements of R'.
Thus there are two orbits in R. The orbit consisting of the identity
above corresponds to the irreducible representations of G which are the
identity on N, i.e., to the representations of G obtained by "lifting"
the irreducible representations of K. Since K is commutative and of
order two, there are two one-dimensional irreducible representations of
K. Thus there are two one-dimensional representations of G associated
with the identity orbit. Let X be either one of the elements in the other
orbit. Then H, consists of the identity above. Thus U' is the only
irreducible representation of G associated with the other orbit. It is
easily seen to be two-dimensional. These three representations exhaust
the irreducible representations of G.

Let G be the group of all rigid motions in the plane considered as a
semi-direct product of the translation group N and the group K of
rotations about 0. The most general x in R9 is defined by a pair a, b
of real numbers--x°.b(x, y) = ev"a ' o The rotation 0 takes xG.b
into xC.d where c = acosO + bsinO,d = -asin6 + bcos8. Thus
X ab and Xc-d lie in the same orbit if and only if a' + b2 

= c2 + d2.
The irreducible representations of G associated with the orbit consisting
of 0, 0 are just the countably many one-dimensional irreducible re-
presentations of K lifted to G. For each X4.b with a2 + b2 > 0,
H,..- reduces to the identity. Hence U". is irreducible and is to
within equivalence the unique irreducible representation of G associ-
ated with the orbit of Xa°b. Thus for each r > 0 there is a unique infinite
dimensional irreducible representation of G.

10. The lnhomogeneous Lorentz group. Next we consider a more
complicated example but one of great physical interest-that in which
N is the additive group of all quadruples of real numbers x0, x1, x2, x3,
and K is the connected component of the identity in the group of all
linear transformations of N onto N which leave fixed the quadratic
form x 1 - - - x3. Each member of K is by definition an
automorphism of N so it makes sense to say that -W is the identity
homorphism. The resulting semi-direct product N x ,K is isomorphic
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to the so-called proper inhomogeneous Lorentz group, the connected
component of the identity in the group of all relativistic automorphisms

of space time, For each quadruple p = (po,pjps,ps) of reai numbers,
let X 1'1'o","a) = e I(Topo-z -'IPZaP_-TP3). Then each X' is a member
of R and every member of R may be so obtained. Each aeK has the
form (X0, X1, X2, X3) _-, 1-~ o alixy, and the corresponding automorphism

of Rq is defined by (Po, pi, p2, p3) - .o blyp) where b,1 = all for i,j
1,2,3,i =j =0bo-, = -aj 0 and bjo = -ao., for j= 1,2,3. It
follows that the action of K on R is the same as on N-the transfor-
mations p --* [p]a are precisely the members of the connected com-
ponent of the identity in the group of linear transformations leaving
fixed the quadratic form po - p• - 2- p.

It follows that each orbit is contained in one of the hyperboloids
po - p2 - p2 - pJ = c where c is a real constant. An easy calcula-
tion shows that for each c < 0 the corresponding hyperboloid is itself
an orbit which we may call 0,. On the other hand for each c > 0 the
hyperboloid is a union of two orbits, one C+. containing (V'c, 0, 0, 0),
and one C _ containing ( - Vcc, 0, 0, 0). For c = 0, the hyperboloid de-
generates into a cone containing three orbits: one C00 containing 0
alone, one Co. containing (1, 1, 0, 0) and one 00- containing
(- I, I, 0, 0). It is obvious that there is a Borel cross section for the
orbits so that we have a regular semi-direct product.

It will be convenient to divide the discussion of the representations
associated with each orbit into cases.

CASE I. c > 0. Both H,-e°.oo.o, and H.,- -'e.o.oo, are isomorphic
to the group of all linear transformations in E 3 which have positive
determinant and leave x' + x8 + x3 fixed, that is to the rotation group
in three dimensions. We have already described the irreducible
representations o•f this group. They are the 2j + I dimensional re-
presentations D, where j = 0, 1, 2,. * .. Thus for each c > 0 we Vet
two infinite sequences of irreducible representations of G, U1(''°'°°' D1

and UX' .0.0..o,,. For future reference let us call these L"..' and
L - WC.I respectively.

CASE If. Co- and to0,. Ha,.,.o.o, and Hx,-,.,.o.o, are isomorphic
to the group of all rigid motions in the plane. This group was dis-
cussed in the preceding section and its representations fell into two
classes. There was a "continuous" family of infinite dimensional ir-
reducible representations parameterized by the positive real number r,
and a "discrete" family of one-dimensional irreducible representations
parameterized by an integer n. We have accordingly four classes of
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irreducible representations of G which we shall denote by LO
LO - .,, LO + o.x, LO --- t.o.

CASE Ill. Co.0. H,°.o.°o-o = K and the corresponding irreducible
representations of G are just those of K lifted to G. The determination
of the irreducible representations of K is a difficult problem which has
been solved in (33 by Gelfand and Neumark. However, for reasons
which will be indicated below the corresponding representations of G
are not of physical interest. Accordingly, we shall say no more about
them.

CASE IV. C < 0. Hz0'o.eo, is isomorphic to the homogeneous
Lorentz group in three-dimensional space time. The determination of
the irreducible representations of this group is also a difficult problem.
It has been solved in [(1 by V. Bargmann. Again, however, the
corresponding representations of G do not seem to be of physical
interest and we shall not discuss them further.

We conclude this section with some brief indications conceining the
physical significance of the results described. For plausible reasons
which we shall not discuss one expects the representation of the in-
homogeneous Lorentz group associated with a relativistic quantum
mechanical system to be irreducible when the system is an "elementary
particle." Thus the classification of irreducible representations which
we have given yields a corresponding classification of elementary
particles. Let us examine the physical meaning of the parameters in
this classification. As indicated in §1, the energy observable is the
infinitesimal generator of the restriction of our representation to
the one-parameter group (xo, x, x2, x3) -* (Xo + t, x1, x 2, x3). More-
over the x component of momentum observable is the infinitesimal
generator of the restriction of our representation to the one-parameter
group (Xo, x 1, x2, x3) -,. (Xo, x1 + x, x 2, x3). Similar statements hold
for the y and z linear momentum components. Of course we are suppos-
ing units chosen so that h = I. It follows that those observables
depend only upon the restriction of our representation to N and hence
only upon the relevant orbit in 19. The representation of N associated
with a given orbit takes the simple form described in §4 and
from this it is easy to compute that for an orbit lying in the hyper-
boloid p0 - p2 - p2 = c, the energy observable Po is related to
the momentum observables in the x, y. and z direction P1 , P2 , and P3
by the equation Po = c + P• + P• + PM. This is exactly the relation-

ship between energy and momentum for a relativistic particle of rest
mass v/c whenever c >, 0. When c < 0 we get a relationship between
energy and momentum which does not occur for any physical particle

•2 1
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and would imply an imaginary rest mass. This is why Case IV is
rejected. In Case III the observables Po, P1, P2, and P3 are all zero-
another physically impossible situation.

The representations LV'ý' in Case I are described by two para-
meters. The absolute value of the first has already been correlated
with the rest mass of the corresponding particle. Its sign is not
physically significant since L"I.I and L -' . are "equivalent" via an
anti-unitary transformation. What aboutJ? We shall not give details
but simply state that one computes the angular momentum observables
and is led to the conclusion that a particle whose representation is
V'_" has "spin" j. We get only integral spins because we have
ignored the projective representations of G.

In Case 1I where the particles have rest mass zero the integral para-
meter can also be interpreted as spin though not in quite so straight-
forward a way. The representations with the continuous parameter r
have a dubious physical significance.

11. Sur remarks. Let G be a type I group (i.e., having
only type I representations) and let G denote the set of all equivalence
classes of irreducible representations of G. It is possible to define a
notion of Borel set in d and to extend the considerations of §4 so as to
obtain a one-to-one correspondence between measure classes in G and
multiplicity free representations of G completely analogous to that
obtained in §4 for commutative groups. Taking §3 into account we
see that once we know G we know all representations of G, irreducible
or not. Since we now know G for many regular semi-direct products
G it is of particular interest to know when a regular semi-direct product
is of type I.

THEOREM 11. 1. A regular semi-direct product N x, K is of type I
if and only if H, is of type I for all XGJQ.

When G is the inhomogeneous Lorentz group, there are essentially
four different possibilities for H, as pointed out in §10. In two cases
H, is a connected semi-simple Lie group and hence of type I by a
theorem due to Harish-Chandra. In another H, is compact and
hence of type I by the Peter-Weyl theorem. In the remaining case H,
is a regular semi-direct product of two commutative groups and
hence is of type I by Theorem 11. 1 and the theorem that all commuta-
tive groups are of type I. Thus the inhomogeneous Lorentz group is
of type I.

What can one say about the irreducible representations of G when
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G is an irregular semi-direct product of N and K; for example, when
G is the subgroup of all rigid motions in the plane generated by the
translations and a rotation through an irrational multiple of r? First
of all we can certainly find lots of representations. For each orbit 67,
one can form H, and the irreducible representations UVL just as in the
regular case. However two difficult problems remain: (a) that of
finding all ergodic invariant measure classes not concentrated in orbits
and (b) that of analyzing the set of all irreducible representations
associated with a fixed such ergodic invariant measure class. The
author is now studying question (b) and has found that one can
develop a theory of "virtual subgroups" and their representations to
compensate for the lack of existence of an H, when the measure class
is not concentrated in an orbit.

We remark finally that the theory we have been describing has been
extended to the case in which N instead of being commutative is only
of type 1, K does not necessarily exist, and the representations may be
only projective. The problem of finding all representations of the
anti-commutation relations may be reduced to a problem in this more
general theory but leads to the irregular case.

12. Guide to the Ilterature. The irreducible representations of the
inhomogeneous Lorentz group were first found by Wigner in [11).
Their connection with elementary particles and relativistic wave equa-
tions is discussed in detail by Wigner and Bargmann in [2]. The
general theory of semi-direct products described here was first obtained
by the author in [4) as a corollary to a theorem about systems of im-
primitivity. A more careful statement with examples will be found in
[5]. The more general theory indicated in §!1 appears in [73 and [8].
[8] contains a more detailed proof of the main theorem of [4]. A
detailed treatment of the material of these chapters is included in the
lecture notes [63 of a course given by the author at the University of
Chicago in 1955. These notes are perhaps easier to read than either [43
or [83. In all treatments the hypothesis of type I-ness is supplemented
by one requiring that G be "smooth." This hypothesis has been
shown to be unnecessary by recent work of J. Glimm.
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wave) rep., 77-79 tensor, in Hilbert space, 79
generating functional, 62 topologies, on operators 56
Hamiltonian, interaction, 87 type I, ring, 117
Hilbert space, analysis in, 75-77 unitary implementability, of canonical
intertwining operator, 116 transformations, 24, 29
kinematics, 52 vacuum, 58-59, 62-63
Klein-Gordon equation, 31 value, spectral (cigen), 6
Klein-Gordon representation, 35 Weyl algebra, 51, 52
local interaction, 44 Weyl relations, 9, 15, 18, 47
Lorentz transformations, 33-35, 125-126 Weyl system, 46-49
manifold, infinite, 99 Wiener space, 28, 75
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